Доктор Моррис

Микро и макроэлементы в питании

Микроэлементы и макроэлементы или минералы

Для нормального функционирования организма важно наличие достаточного количества необходимых минеральных веществ и витаминов. Минералы – важные составные элементы костей, жидкостей тела и энзимов. Минеральные вещества подразделяются на две категории: микроэлементы и макроэлементы. Макроэлементы нужны телу в больших количествах, их содержание в организме составляет более 5 граммов. К числу макроэлементов относятся 7 элементов: кальций (Ca), фосфор (P), магний (Mg), натрий (Na), калий (K), сера (S) и хлор (Cl). Микроэлементами называют минеральные вещества, которые нужны организму в очень малых количествах. Если макроэлементы распределяются по разным тканям организма достаточно равномерно, то микроэлементы распределяются по телу неравномерно, и группируются по разным специфическим органам.

Человеческий организм не способен самостоятельно производить минералы, и их нужно усваивать с пищей. Потребность в минералах варьируется в разные жизненные периоды и зависит от пола, питания, возраста, заболеваний, жизненной среды и еще некоторых факторов. Больше всего минералы нужны детям, которые еще растут, женщинам в период беременности и грудного вскармливания, а также людям старшего возраста. Как было сказано выше, потребность в минеральных веществах зависит от питания, и если в течение длительного времени организм получает их недостаточно, это может стать опасным для организма. Осознанное и систематическое употребление минералов, как и витаминов, помогает снизить риск формирования многих заболеваний или ускорить процессы выздоровления.

При усваивании минеральных веществ и витаминов важно соотношение между ними. Например, всасываемость и использование железа улучшают витамин С и медь. Для усваивания кальция важен магний. Содержание кальция в крови регулируют фосфор и витамин D. Необходимое количество цинка способствует усваиванию витаминов группы В.

Разные минеральные вещества, прежде всего, макроэлементы, к тому же, являются важными электролитами. С физиологической точки зрения, первичными ионами электролита среди минеральных веществ являются калий (K+), натрий (Na+), кальций (Ca2+) и магний (Mg2+). Важность электролитов состоит в том, что они помогают регулировать нервные и мышечные функции, сохранять кислотно-щелочной баланс и кровяной баланс в организме. Если баланс электролитов нарушен, это может вызвать разные нарушения в организме.

Недостаток минералов

Основной причиной недостатка минералов в организме служит недостаточное и однообразное питание. Возникновению недостатка минералов способствует также регулярное чрезмерное употребление кофе, богатых сахаром продуктов и напитков, а также частая физическая активность, потение и повышение интенсивности работы пищевого тракта или почек. Минералы усваиваются из пищи и напитков. Содержание минералов в пище зависит от ее качества и обработки. В растениях накапливаются минералы из почвы, таким образом, количество минералов зависит от того, где растет растение и как оно удобряется. Питьевая вода также содержит минеральные вещества, и, таким образом, важно происхождение воды. При горячей обработке пищи потери минералов значительно меньше, чем витаминов. При рафинировании или чистке продуктов часть минеральных веществ удаляется. Несмотря на то, что организм нуждается в небольших количествах минералов, в нем не содержится достаточного запаса минеральных веществ, и длительный дефицит минералов может вызвать проблемы со здоровьем. Потребность в минералах, как и в витаминах, зависит от пола, возраста, массы тела, физической активности и физиологического состояния человека. Более высокая потребность в минералах наблюдается у детей, женщин фертильного возраста, пожилых людей, людей, у которых большая физическая нагрузка, а также во время стресса и заболеваний.

Передозировка минеральных веществ

Для функционирования организма важен баланс биоэлементов. Для быстрого получения какого-либо недостающего вещества разумно будет использовать препараты минеральных веществ или пищевые добавки. Из них организм может легко получить необходимые соединения. Чрезмерное употребление минеральных веществ может привести к нарушениям функционирования организма. Избыток какого-либо минерала может вызвать нарушения в усваивании других минералов и витаминов. Симптомами чрезмерного употребления служат, например, аллергии, раздражение на коже, боль в животе или в голове, а также проблемы с пищеварением.

Таблица 1. Рекомендуемая дневная норма минералов для взрослых (terviseamet.ee).

Организмы состоят из клеток. Клетки разных организмов обладают сходным химическим составом. В таблице 1 представлены основные химические элементы, обнаруженные в клетках живых организмов.

Таблица 1. Содержание химических элементов в клетке

По содержанию в клетке можно выделить три группы элементов. В первую группу входят кислород, углерод, водород и азот. На их долю приходится почти 98% всего состава клетки. Во вторую группу входят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента. Элементы этих двух групп относят к макроэлементам (от греч. макрос — большой).
Остальные элементы, представ ленные в клетке сотыми и тысячными долями процента, входят в третью группу. Это микроэлементы (от греч. микро — малый).
Каких-либо элементов, присущих только живой природе, в клетке не обнаружено. Все перечисленные химические элементы входят и в состав неживой природы. Это указывает на единство живой и неживой природы.
Недостаток какого-либо элемента может привести к заболеванию, и даже гибели организма, так как каждый элемент играет определенную роль. Макроэлементы первой группы составляют основу биополимеров — белков, углеводов, нуклеиновых кислот, а также липидов, без которых жизнь невозможна. Сера входит в состав некоторых белков, фосфор — в состав нуклеиновых кислот, железо — в состав гемоглобина, а магний — в состав хлорофилла. Кальций играет важную роль в обмене веществ.
Часть химических элементов, содержащихся в клетке, входит в со став неорганических веществ — минеральных солей и воды.
Минеральные соли находятся в клетке, как правило, в виде катионов (К+, Na+, Ca2+, Mg2+) и анионов ( HPO2-/4, H2PO-/4, СI-, НСО3), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды.
(У многих клеток среда слабощелочная и ее рН почти не изменяется, так как в ней постоянно поддерживается определенное соотношение катионов и анионов.)
Из неорганических веществ в живой природе огромную роль играет вода.
Без воды жизнь невозможна. Она составляет значительную массу большинства клеток. Много воды содержится в клетках мозга и эмбрионов человека: воды более 80%; в клетках жировой ткани — всего 40.% К старости содержание воды в клетках снижается. Человек, потерявший 20% воды, погибает.
Уникальные свойства воды определяют ее роль в организме. Она участвует в теплорегуляции, которая обусловлена высокой теплоемкостью воды — потреблением большого количества энергии при нагревании. Чем же определяется высокая теплоемкость воды?
В молекуле воды атом кислорода ковалентно связан с двумя атомами водорода. Молекула воды полярна, так как атом кислорода имеет частично отрицательный заряд, а каждый из двух атомов водорода имеет
частично положительный заряд. Между атомом кислорода одной молекулы воды и атомом водорода другой молекулы образуется водородная связь. Водородные связи обеспечивают соединение большого числа молекул воды. При нагревании воды значительная часть энергии расходуется на разрыв водородных связей, что и определяет ее высокую теплоемкость.
Вода — хороший растворитель. Благодаря полярности ее молекулы взаимодействуют с положительно и отрицательно заряженными ионами, способствуя тем самым растворению вещества. По отношению к воде все вещества клетки делятся на гидрофильные и гидрофобные.
Гидрофильными (от греч. гидро — вода и филео — люблю) называют вещества, которые растворяются в воде. К ним относят ионные соединения (например, соли) и некоторые неионные соединения (например, сахара).
Гидрофобными (от греч. гидро — вода и фобос — страх) называют вещества, нерастворимые в воде. К ним относят, например, липиды.
Вода играет большую роль в химических реакциях, протекающих в клетке в водных растворах. Она растворяет ненужные организму продукты обмена веществ и тем самым способствует выводу их из организма. Большое содержание воды в клетке придает ей упругость. Вода способствует перемещению различных веществ внутри клетки или из клетки в клетку.
Тела живой и неживой природы состоят из одинаковых химических элементов. В состав живых организмов входят неорганические вещества — вода и минеральные соли. Жизненно важные многочисленные функции воды в клетке обусловлены особенностями ее молекул: их полярностью, способностью образовывать водородные связи.

НЕОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ

В клетках живых организмов встречается около 90 элементов, причем примерно 25 из обнаружены практически во всех клетках. По содержанию в клетке химические элементы подразделяются на три большие группы: макроэлементы(99%), микроэлементы(1%), ультрамикроэлементы(менее 0,001%).
К макроэлементам относятся кислород, углерод, водород, фосфор, калий, сера, хлор, кальций, магний, натрий, железо.
К микроэлеметам относятся марганец, медь, цинк, йод, фтор.
К ультрамикроэлементам относятся серебро, золото, бром, селен.

ЭЛЕМЕНТЫ СОДЕРЖАНИЕ В ОРГАНИЗМЕ (%) БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ
Макроэлементы:
O.C.H.N 62-3 Входят в состав всех органических веществ клетки, воды
Фосфор Р 1,0 Входят в состав нуклеиновых кислот, АТФ (образует макроэргические связи), ферментов, костной ткани и эмали зубов
Кальций Са+2 2,5 У растений входит в состав оболочки клетки, у животных — в состав костей и зубов, активизирует свертываемость крови
Микроэлементы: 1-0,01
Сера S 0,25 Входит в состав белков, витаминов и ферментов
Калий К+ 0,25 Обуславливает проведение нервных импульсов; активатор ферментов белкового синтеза, процессов фотосинтеза, роста растений
Хлор CI- 0,2 Является компонентом желудочного сока в виде соляной кислоты, активизирует ферменты
Натрий Na+ 0,1 Обеспечивает проведение нервных импульсов, поддерживает осмотическое давление в клетке, стимулирует синтез гормонов
Магний Мg+2 0,07 Входит в состав молекулы хлорофилла, содержится в костях и зубах, активизирует синтез ДНК, энергетический обмен
Йод I- 0,1 Входит в состав гормона щитовидной железы — тироксина, влияет на обмен веществ
Железо Fе+3 0,01 Входит в состав гемоглобина, миоглобина, хрусталика и роговицы глаза, активатор ферментов, участвует в синтезе хлорофилла. Обеспечивает транспорт кислорода к тканям и органам
Ультрамикроэлементы: менее 0,01, следовые количества
Медь Си+2 Участвует в процессах кроветворения, фотосинтеза, катализирует внутриклеточные окислительные процессы
Марганец Мn Повышает урожайность растений, активизирует процесс фотосинтеза, влияет на процессы кроветворения
Бор В Влияет на ростовые процессы растений
Фтор F Входит в состав эмали зубов, при недостатке развивается кариес, при избытке — флюороз
Вещества :
Н20 60-98 Составляет внутреннюю среду организма, участвует в процессах гидролиза, структурирует клетку. Универсальный растворитель, катализатор, участник химических реакций

ОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ

ВЕЩЕСТВА СТРОЕНИЕ И СВОЙСТВА ФУНКЦИИ
Липиды
Сложные эфиры высших жирных кислот и глицерина. В состав фосфолипидов входит дополнительно остаток Н3РО4.Обладают гидрофобными или гидрофильно-гидрофобными свойствами, высокой энергоемкостью Строительная — образует билипидный слой всех мембранных.
Энергетическая.
Терморегуляторная.
Защитная.
Гормональная (кортикостероиды, половые гормоны).
Компоненты витаминов D,E. Источник воды в организме.Запасное питательное вещество
Углеводы
Моносахариды:
глюкоза,
фруктоза,
рибоза,
дезоксирибоза
Хорошо растворимы в воде Энергетическая
Дисахариды:
сахароза,
мальтоза (солодовый сахар)
Растворимы в воде Компоненты ДНК, РНК, АТФ
Полисахариды:
крахмал,
гликоген,
целлюлоза
Плохо растворимы или нерастворимы в воде Запасное питательное вещество. Строительная — оболочка растительной клетки
Белки Полимеры. Мономеры — 20 аминокислот. Ферменты — биокатализаторы.
I структура — последовательность аминокислот в полипептидной цепи. Связь — пептидная — СО- NH- Строительная — входят в состав мембранных структур, рибосом.
II структура — a -спираль, связь — водородная Двигательная (сократительные белки мышц).
III структура — пространственная конфигурация a -спирали (глобула). Связи — ионные, ковалентные, гидрофобные, водородные Транспортная (гемоглобин). Защитная (антитела).Регуляторная (гормоны, инсулин)
IV структура характерна не для всех белков. Соединение нескольких полипептидных цепей в единую суперструктуруВ воде плохо растворимы. Действие высоких температур, концентрированных кислот и щелочей, солей тяжелых металлов вызывает денатурацию
Нуклеиновые кислоты: Биополимеры. Состоят из нуклеотидов
ДНК — дезокси-рибонуклеино-вая кислота. Состав нуклеотида: дезоксирибоза, азотистые основания — аденин, гуанин, цитозин, тимин, остаток Н3РО4. Комплементарность азотистых оснований А = Т, Г = Ц. Двойная спираль. Способна к самоудвоению Образуют хромосомы. Хранение и передача наследственной информации, генетического кода. Биосинтез РНК, белков. Кодирует первичную структуру белка. Содержится в ядре, митохондриях, пластидах
РНК — рибонуклеиновая кислота. Состав нуклеотида: рибоза, азотистые основания — аденин, гуанин, цитозин, урацил, остаток Н3РО4 Комплементарность азотистых оснований А = У, Г = Ц. Одна цепь
Информационная РНК Передача информации о первичной структуре белка, участвует в биосинтезе белка
Рибосомальная РНК Строит тело рибосомы
Транспортная РНК Кодирует и переносит аминокислоты к месту синтеза белка — рибосомам
Вирусная РНК и ДНК Генетический аппарат вирусов

Ферменты.

Важнейшая функция белков — каталитическая. Белковые молекулы, увеличивающие на несколько порядков скорость химических реакции в клетке, называют ферментами. Ни один биохимический процесс в организме не происходит без участия ферментов.
В настоящее время обнаружено свыше 2000 ферментов. Их эффективность во много раз выше, чем эффективность неорганических катализаторов, используемых в производстве. Так, 1 мг железа в составе фермента каталазы заменяет 10 т неорганического железа. Каталаза увеличивает скорость разложения пероксида водорода (Н2О2) в 1011 раз. Фермент, катализирующий реакцию образования угольной кислоты (СО2+Н2О = Н2СО3), ускоряет реакцию в 107 раз.
Важным свойством ферментов является специфичность их действия, каждый фермент катализирует только одну или небольшую группу сходных реакций.
Вещество, на которое воздействует фермент, называют субстратом. Структуры молекулы фермента и субстрата должны точно соответствовать друг другу. Этим объясняется специфичность действия ферментов. При соединении субстрата с ферментом пространственная структура фермента изменяется.
Последовательность взаимодействия фермента и субстрата можно изобразить схематично:

Субстрат+Фермент — Фермент-субстратный комплекс — Фермент+Продукт.

Из схемы видно, что субстрат соединяется с ферментом с образованием фермент-субстратного комплекса. При этом субстрат превращается в новое вещество — продукт. На конечном этапе фермент освобождается от продукта и вновь вступает во взаимодействие с очередной молекулой субстрата.
Ферменты функционируют лишь при определенной температуре, концентрации веществ, кислотности среды. Изменение условий приводит к изменению третичной и четвертичной структуры белковой молекулы, а, следовательно, и к подавлению активности фермента. Как это происходит? Каталитической активностью обладает лишь определенный участок молекулы фермента, называемый активным центром. Активный центр содержит от 3 до 12 аминокислотных остатков и формируется в результате изгиба полипептидной цепи.
Под влиянием разных факторов изменяется структура молекулы фермента. При этом нарушается пространственная конфигурация активного центра, и фермент теряет свою активность.
Ферменты — это белки, играющие роль биологических катализаторов. Благодаря ферментам на несколько порядков возрастает скорость химических реакций в клетках. Важное свойство ферментов — специфичность действия в определенных условиях.

Нуклеиновые кислоты.

Нуклеиновые кислоты были от крыты во второй половине XIX в. швейцарским биохимиком Ф. Мишером, который выделил из ядер клеток вещество с высоким содержанием азота и фосфора и назвал его «нуклеином» (от лат. нуклеус — ядро).
В нуклеиновых кислотах хранится наследственная информация о строении и функционировании каждой клетки и всех живых существ на Земле. Существует два типа нуклеиновых кислот — ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Нуклеиновые кислоты, как и белки, обладают видовой специфичностью, то есть организмам каждого вида присущ свой тип ДНК. Чтобы выяснить причины видовой специфичности, рассмотрим строение нуклеиновых кислот.
Молекулы нуклеиновых кислот представляют собой очень длинные цепи, состоящие из многих сотен и даже миллионов нуклеотидов. Любая нуклеиновая кислота содержит всего четыре типа нуклеотидов. Функции молекул нуклеиновых кислот зависят от их строения, входящих в их состав нуклеотидов, их числа в цепи и последовательности соединения в молекуле.
Каждый нуклеотид состоит из трех компонентов: азотистого основания, углевода и фосфорной кислоты. В состав каждого нуклеотида ДНК входит один из четырех типов азотистых оснований (аденин — А, тимин — Т, гуанин — Г или цитозин — Ц), а также угле вод дезоксирибоза и остаток фосфорной кислоты.
Таким образом, нуклеотиды ДНК различаются лишь типом азотистого основания.
Молекула ДНК состоит из огромного множества нуклеотидов, соединенных в цепочку в определенной последовательности. Каждый вид молекулы ДНК имеет свойственное ей число и последовательность нуклеотидов.
Молекулы ДНК очень длинные. Например, для буквенной записи последовательности нуклеотидов в молекулах ДНК из одной клетки человека (46 хромосом) потребовалась бы книга объемом около 820000 страниц. Чередование четырех типов нуклеотидов может образовать бесконечное множество вариантов молекул ДНК. Указанные особенности строения молекул ДНК позволяют им хранить огромный объем информации обо всех признаках организмов.
В 1953 г. американским биологом Дж. Уотсоном и английским физиком Ф. Криком была создана модель строения молекулы ДНК. Ученые установили, что каждая молекула ДНК состоит из двух цепей, связанных между собой и спирально закрученных. Она имеет вид двойной спирали. В каждой цепи четыре типа нуклеотидов чередуются в определенной последовательности.
Нуклеотидный состав ДНК различается у разных видов бактерий, грибов, растений, животных. Но он не меняется с возрастом, мало зависит от изменений окружающей среды. Нуклеотиды парные, то есть число адениновых нуклеотидов в любой молекуле ДНК равно числу тимидиновых нуклеотидов (А-Т), а число цитозиновых нуклеотидов равно числу гуаниновых нуклеотидов (Ц-Г). Это связано с тем, что соединение двух цепей между собой в молекуле ДНК подчиняется определенному правилу, а именно: аденин одной цепи всегда связан двумя водородными связями только с Тимином другой цепи, а гуанин — тремя водородными связями с цитозином, то есть нуклеотидные цепи одной молекулы ДНК комплементарны, дополняют друг друга.
ДНК содержат все бактерии, подавляющее большинство вирусов. Она обнаружена в ядрах клеток животных, грибов и растений, а также в митохондриях и хлоропластах. В ядре каждой клетки человеческого организма содержится 6,6 х 10-12 г ДНК, а в ядре половых клеток — в два раза меньше — 3,3 х 10-12 г.
Молекулы нуклеиновых кислот — ДНК и РНК состоят из нуклеотидов. В состав нуклеотидов ДНК входит азотистое основание (А, Т, Г, Ц), углевод дезоксирибоза и остаток молекулы фосфорной кислоты. Молекула ДНК представляет собой двойную спираль, состоящую из двух цепей, соединенных водородными связями по принципу комплементарности. Функция ДНК — хранение наследственной информации.

АТФ.

В клетках всех организмов имеются молекулы АТФ — аденозинтрифосфорной кислоты. АТФ — универсальное вещество клетки, молекула которого имеет богатые энергией связи. Молекула АТФ — это один своеобразный нуклеотид, который, как и другие нуклеотиды, состоит из трех компонентов: азотистого основания — аденина, углевода — рибозы, но вместо одного содержит три остатка молекул фосфорной кислоты (рис. 12). Связи, обозначенные на рисунке значком, — богаты энергией и называются макроэргическими. Каждая молекула АТФ содержит две макроэргические связи.
При разрыве макроэргической связи и отщеплении с помощью ферментов одной молекулы фосфорной кислоты освобождается 40 кДж/моль энергии, а АТФ при этом превращается в АДФ — аденозиндифосфорную кислоту. При отщеплении еще одной молекулы фосфорной кислоты освобождается еще 40 кДж/моль; образуется АМФ — аденозинмонофосфорная кислота. Эти реакции обратимы, то есть АМФ может пре вращаться в АДФ, АДФ — в АТФ.
Молекулы АТФ не только расщепляются, но и синтезируются, по этому их содержание в клетке относительно постоянно. Значение АТФ в жизни клетки огромно. Эти молекулы играют ведущую роль в энергетическом обмене, необходимом для обеспечения жизнедеятельности клетки и организма в целом.

Рис. 12. Схема строения АТФ.

аденин –

Молекула РНК, как правило, одиночная цепь, состоящая из четырех типов нуклеотидов — А, У, Г, Ц. Известны три основных вида РНК: иРНК, рРНК, тРНК. Содержание молекул РНК в клетке непостоянно, они участвуют в биосинтезе белка. АТФ — универсальное энергетическое вещество клетки, в котором имеются богатые энергией связи. АТФ играет центральную роль в обмене энергии в клетке. РНК и АТФ содержатся как в ядре, так и в цитоплазме клетки.

Йод, необходимый лишь в микродозах, помогает метаболизму избыточного жира и важен для физического и умственного развития. Он также требуется для нормального функционирования щитовидной железы и предупреждения зоба. Содержание йода в продуктах питания в значительной мере зависит от содержания его в биогеохимической среде. В морской воде йода примерно 0,2 мг%. Неорганический йод, проникая из крови в щитовидную железу, превращается там в дийодтирозин и откладывается в коллоиде фолликулов железы. Дийодтирозин — один из промежуточных продуктов в синтезе щитовидной железой тироксина — гормона щитовидной железы. Тироксин связан с белком, входит в состав тиреглобулинов, которые рассматриваются как резерв тироксина. Тиреотропный гормон гипофиза повышает способность щитовидной железы фиксировать йод. Под влиянием тиреотропного гормона гипофиза изменяется соотношение между фракциями йода в щитовидной железе, повышается активность катепсина железы, расщепляющего тиреоглобулин.

Йод выводится из организма почками, кишечником, слизистой оболочкой носа, кожей, легкими. При беременности и в период менструации выведение йода увеличивается. Значение йода в обмене веществ определяется его отношением к гормону щитовидной железы и патологическим изменениям ее функции (тиреотоксикоз, зоб, микседема). В местностях, где распространен эндемический зоб, населению могут давать йодированную поваренную соль (правда, недостаток йода не является единственной причиной образования зоба). При микседеме содержание йода в организме падает, при тиреотоксикозе уровень общего йода в крови повышается. Недостаток йода у детей может проявится в отставании в умственном развитии.

Кроме того, недостаточность йода связывают с раком молочной железы, усталостью, неонатальным гипотиреозом (кретинизмом) и повышением веса. Дефицит йода приводит к росту опухолей и появлению кисты молочной железы, а также к общей слабости, сонливости, головным болям. Слабеет зрение, слух и память. У мужчин снижается половое влечение, а у женщин нарушается менструальный цикл. Йод препятствует образованию тромбов и повышению свертываемости крови.

Потребность взрослого человека в этом микроэлементе составляет 150 –200 мкг в день. Йод необходим организму для поддержания гормонального баланса, он укрепляет иммунитет, повышает сопротивляемость к инфекционным заболеваниям. Его общее количество в организме не превышает 25 г, из них 15 г содержится в щитовидной железе.

К пищевым продуктам, богатым йодом, относятся морепродукты, йодированная соль, морская рыба, красные и бурые водоросли. Йод также содержится в чесноке, луке, грибах, семенах кунжута, соевых бобах, спарже, шпинате, тыкве. Морские растения и животные поглощают йод из морской воды и являются хорошими источниками йода.

Сегодня острый дефицит йода встречается довольно редко, благодаря широкому распространению йодированной соли. Скрытый дефицит обнаруживается при специальных обследованиях, назначаемых врачом, например, при замедлении умственного развития у детей. С профилактической целью содержащие йод продукты и добавки используются, в частности, в США женщинами репродуктивного возраста, рекомендуют его и детям, так как микроэлемент оказывает благотворное влияние на нервную систему.

Обогащение пищевого рациона продуктами, содержащими йод (морская капуста, креветки, минтай, серебристый хек), помогает, по мнению диетологов, в регуляции деятельности сердечно-сосудистой системы, понижает уровень холестерина в крови.

Показания к применению

Микседема, гипотиреоз.

Продукция

Йод в рекомендованной дозировке содержится в витаминных комплексах «Арнебия Мультивитамин ретард», «Арнебия 24 комплекс».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *