Доктор Моррис

И лимфоциты

Я пройдусь по всему процессу еще раз очень кратко. Патоген попадает внутрь организма и его всеми способами атакует врождённая иммунная система (фагоциты, лейкоциты, система комплемента). Информаци о патогене попадает в специальные органы (например, лимфоузлы посредством антигенпрезентующих клеток), где с ней активно знакомятся клетки адаптивной иммунной системы (T-лимфоциты). Запускается производство антител посредством B-лимфоцитов. Антитела приходят на помощь и значительно упрощают работу врождённой иммунной системе.

Начнем распутывать этот клубок, задавая очень разумные и простые вопросы.

#1. Как организм отличает свои клетки от чужих?

Действительно, многообразие нужных и полезных штук в организме огромное. Как отличить своё от чужого? Для начала разберемся с бактериями.

Вот гуляет по нашему телу фагоцит и вступает в контакт с разными бактериями. Некоторые полезные и нужные, но некоторые подлежат уничтожению.

Оказывается, фагоциты и бактерии активно участвуют в гонке вооружений. Фагоциты стремятся отрастить рецепторы, которые распознают критически важные и специфичные для вредных бактерий молекулы. Бактерии стремятся избавиться от этих специфичных молекул и заменить их чем-то другим, чтобы рецепторы перестали работать.

Фагоцит обнаруживает вредную бактерию.

В данном случае фагоцит успешно распознает маннозу, которая входит в состав гликопротеинов многих бактерий. Как оказалось, бактерии не так-то просто избавиться от этого компонента мембраны, и эту бактерию фагоцит успешно уничтожит. Очевидно, что у полезных бактерий такого компонента мембраны нет.

#2. Как организм узнает, что у клетки проблемы внутри?

Ну хорошо, снаружи есть рецепторы и это довольно просто. Но как распознать патоген, которые забрался внутрь клетки и там творит свои темные дела под покровом клеточной мембраны?

Если очень кратко, то процесс работает так. Внутри клетки есть штуки, которые постоянно дробят на мелкие кусочки всё, что попадается под руку. Эти мелкие кусочки клетка выставляет наружу на обозрение всем заинтересованным лицам через специальный комплекс белковых молекул (MHC). Заинтересованные лица (например, T-киллер) смотрят на эти куски в поисках антигенов. Если антиген совпадает с рецептором, то сразу становится ясно, что внутри клетки происходит что-то нехорошее. Ну а если не совпадает, то клетка считается здоровой.

Сложный процесс демонстрации клеткой своих внутренностей.

Для дотошных более подробно. В процессе жизнедеятельности в клетке образуются протеины, куски протеинов и прочие цепочки аминокислот. Ну там собралось что-то неправильно, или вирус разрушился и его остатки там плавают. Эти остатки рано или поздно попадают в протеасому, которая безжалостно рубит их в мелкие пептиды. Далее, транспортный белок TAP берет эти пептиды и тащит в эндоплазматический ретикулум. В нём пептид сгружается на MHC (главный комплекс гистосовместимости), который в пузырьке благополучно доставляется на поверхность клетки и встраивается в мембрану.

Таким образом, клетка постоянно демонстрирует своё содержимое наружу через MHC. Природа заложила каналы для мониторинга клеток!

К сожалению, некоторые вирусы умеют блокировать MHC (или сильно уменьшать их количество, уменьшая вероятность обнаружения проблем). С этими хитрецами умеют бороться натуральные киллеры. Раз на поверхности нет MHC, то клетку можно считать нездоровой и ликвидировать её. Очень элегантно.

#3. Как организм производит такое многообразие антител?

Пожалуй, самый сложный для объяснения вопрос. Для начала разберемся чуть более подробно, что же такое антиген.

Антиген — любое вещество, которое организм считает чужеродным. Таких веществ огромное количество, как можно себе представить. Поэтому организму необходимо уметь производить около 100 миллионов разновидностей антител, чтобы уметь распознавать все эти антигены.

Антитела (antibody) в целом похожи, но у них есть часть, которая весьма разнообразна. Собственно эта часть и умеет распознавать антигены.

Антитело со стабильной частью (серым) и вариабельной частью (красным).

Ну хорошо, а зачем нам антитела? Это всего лишь белковые молекулы, на что они способны? У антител есть главная задача: прикрепляться к патогенам (этот процесс называется специальным словом опсонизация) и сигнализировать клеткам иммунной системы о том, что «вот я тут прикрепился к чему-то нехорошему, это можно уничтожать”. Кроме того, бактерии, облепленные антителами, теряют подвижность, что облегчает фагоцитам охоту за ними.

Антитела радикально помогают клеткам иммунной системы обнаруживать и уничтожать патогены. Без них мы бы все давно умерли.

B-лимфоцит обнаруживает бактерию с подходящим антигеном, активируется, и начинает бешено производить антитела (со скоростью 2000 штук в секунду!)

Переходим к самой сложной части. Напомню, виды белков, которые может синтезировать клетка, закодированы в ДНК. Как нам получить 100 миллионов разных конфигураций антител? Кодировать это все в ДНК совершенно невозможно, потому что она станет неприлично большой. В дело вступает крайне элегантный процесс модульного дизайна, который называется V(D)J-рекомбинацией.

Антитела производятся зрелыми B-лимфоцитами. B-лимфоциты бывают незрелые (immature) и зрелые (mature). Так вот ДНК отдельно взятого зрелого B-лимфоцита собирается из произвольно выбранных кусков ДНК незрелого B-лимфоцита.

Всё сложно.

V, D, J и C — это сегменты генов в ДНК. Например V сегмент имеет 40 различных копий самого себя, которые немного отличаются друг от друга. D — 25 копий, и так далее. Вы можете считать все эти копии модулями. Когда строится ДНК зрелой клетки, эти модули берутся случайным образом и склеиваются друг с другом. Данного разнообразия всё равно недостаточно, поэтому в этот кусок ДНК встраиваются случайные нуклеотиды, которые увеличивают разнообразие еще на один порядок.

К сожалению, эти случайные вставки в 90% случаев приводят к нефункциональной B-клетке, которая уничтожается организмом. Так что выживает только 10% B-клеток. Процесс рекомбинации довольно дорогой, как вы видите. Приходится избавляться от большого количества брака. Зато это прекрасный образец модульного дизайна и порождения разнообразия из малого объема хранимой информации!

Дальше будет только проще. Мы перевалили через вершину.

#4. Как распространяется сигнал от места инфекции?

Представьте, что вы лейкоцит и вас носит по капиллярам и артериям с довольно приличной скоростью. И вот где-то на периметре атака бактерий! Ваша задача выйти из капилляра и ринуться на помощь. Как это сделать?

Выход лейкоцитов из крови;

Допустим, бактерии уже обнаружены макрофагами, они скушали десяток бактерий и сигнализировали цитокинами о том, что всё не очень хорошо. Цитокины распространяются во всех направлениях и рано или поздно достигают капилляра, по которому быстро «плывут” лейкоциты. По сигналу цитокинов в стенке капилляра активизируются пара белков — селектин и интегрин. Селектин притормаживает лейкоцит, а вместе с интегрином лейкоцит останавливается совсем. Затем стенка капилляра раздвигается, лейкоцит вырывается на свободу и устремляется по цитокиновому следу к месту воспаления.

Как видно, сигнал локальный и работает через градиент концентрации. Это очень типичный паттерн в живых организмах. Всё это работает без какой-либо координации из мозга или прочих важных центров. Самоорганизация в действии.

#5. Как макрофаг уничтожает бактерию?

Макрофаги — удивительные создания. Вероятнее всего они продукт симбиоза амёб и более развитых организмов (как наш). Первым делом макрофаг обнаруживает бактерию с помощью своих рецепторов или с помощью антител, которые любят облепливать бактерии. Что же потом? Желудка у него нет, как и ротового отверстия. Как быть?

Макрофаг окружает бактерию и поглощает её. Живая бактерия плавает в специальном пузырьке внутри макрофага и надо бы её уничтожить. Происходит это так. Внутри макрофага есть пузырьки с энзимами. Энзимы прекрасно разрушают белки, так что могут с лёгкостью разрушить и сам макрофаг. Поэтому хранить их приходится в пузырьках-лизосомах.

Суровый макрофаг на страже чистоты нашего организма.

Думаю вы уже догадались, что произойдет с бактерией дальше. Всё, что осталось сделать—это слить пузырёк с бактерией вместе с лизосомой. Энзимы и бактерия оказываются вместе, после чего бактерия разрушается.

Надо сказать, что макрофаг не особенно любит что-то выбрасывать просто так. Поэтому разрушенные части выставляются на всеобщее обозрение, чтобы другие молекулы иммунной системы могли увидеть, что там сожрал макрофаг и среагировать на проблемы быстрее (самые сообразительные заметили, что макрофаг является APC, то есть антигенпрезентующей клеткой). Поразительная многозадачность!

#6. Как еще уничтожаются бактерии и клетки?

Помните систему комплемента? Настало время рассказать, как она работает.

  1. Сначала антитела прикрепляются к обреченной бактерии.
  2. Система комплемента устроена так, что любит прикрепляться к антителам, которые расположены рядом.
  3. После этого запускается довольно сложный процесс, в который мы не будем углубляться. В результате белки комплемента встраиваются в мембрану бактерии.
  4. Постепенно они перфорируют мембрану, и содержимое бактерии устремляется наружу. Бактерию разрывает, короче говоря.

Система комплемента дырявит мембрану бактерии. Можно считать что антитела являются системой наведения для бомбардировок бактерий.

Антитела, как я уже говорил, опсонизируют бактерию, чем уменьшают её подвижность и делают крайне привлекательной для макрофагов.

Недовольная бактерия облепленная антителами, на которую со злобным удовлетворением посматриваем суровый макрофаг.

Давайте ещё посмотри на T-киллеров (это уже клетки адаптивной иммунной системы). T-киллеры работают очень элегантно. Например, у нас в клетке вирус. Она выставила куски вируса наружу и T-киллер благополучно прикрепился к этой клетке. Что дальше? Как её уничтожить?

Для начала T-киллер выбрасывает белок перфорин, который делает в мембране клетки дырку. Потом выбрасывается гранзим, который проникает в клетку через эту дыру.

Может быть вы слышали, что клетки могут запустить процесс самоубийства, который называется апоптоз. Собственно, гранзим и запускает этот процесс.

Процесс запуска апоптоза инфицированной клетки. В каждой клетке лежат энзимы, которые ждут своей активации, чтобы разрушить все вокруг.

Фактически T-киллер приказывает клетке совершить самоубийство! Надо сказать, что апоптоз гораздо безопаснее для организма, чем какой-то другой процесс разрушения клетки, потому что в случае апоптоза вирусы внутри клетки уничтожаются, а в случае спонтанного разрушения благополучно могут выжить.

#7. Как работает память адаптивной иммунной системы?

Как вы знаете, организм каким-то образом запоминает перенесенные инфекции и потом реагирует на них гораздо быстрее. Как это происходит? За это отвечают B-лимфоциты.

Пока я рассказывал только о B-лимфоцитах, которые умеют вырабатывать антитела (plasma B-cell), но некоторая часть B-лимфоцитов превращается в клетки памяти (memory B-cell). Они несут на своей поверхности рецепторы, которые умеют распознавать данный антиген. Клетки памяти живут долго.

Наивный B-лимфоцит может превратиться либо в плазматическую клетку, либо в клетку памяти. Клетки памяти — это кеш нашей иммунной системы!

Представим, что в организм попал патоген, с которым мы уже имели дело. Его презентуют клетке памяти, она активируется, размножается и начинает производить антитела в гораздо больших количествах.

Например, если при первом иммунном ответе приличная концентрация антител достигается через 15 дней, то при повторном скорость выработки антител выше в 100 раз и уже через несколько дней концентрация достаточна для быстрой и сокрушительной победы.

#8. Зачем матери целуют своих детей?

Теперь вы, скорее всего, и сами сможете ответить на этот вопрос. Подумайте немного, прежде чем читать дальше.

У грудных детей не особенно хорошо работает адаптивная иммунная система, поэтому антитела они получают с молоком матери (в частности поэтому кормление грудью для детей крайне полезно, они меньше болеют).

Но как иммунной системе матери определить, с какими патогенами имеет дело ребёнок в данный момент времени? Поцелуй работает просто великолепно! После поцелуя в организм матери попадают патогены, которые есть у ребёнка. Иммунная система матери реагирует на них, memory B-cells активируются и вырабатывают большое количество нужных антител. Ребёнок сосет молоко вместе с антителами и успешно борется с патогенами.

Так что, мамы, почаще целуйте своих детей, пока кормите их грудью. Ну и потом тоже можно, правда на здоровье ребёнка это уже вряд ли повлияет.

Почти конец

Можно задать еще очень много интересных и важных вопросов:

  • Как иммунная система борется с раком?
  • Почему она не может эффективно распознавать раковые клетки?
  • Как самые перспективные лекарства от рака связаны с иммунной системой?
  • Как иммунные клетки учатся не убивать клетки собственного организма?
  • Что бывает, когда это все же случается?
  • Как организм борется с грибками?

Возможно, вам станет интересно и вы поглубже уйдёте в эту проблематику (или попросите меня написать продолжение). К сожалению, большинство хороших и относительно доступных материалов есть только на английском языке.

Такие дела.

Итак, вы сдали общий анализ крови (он же клинический анализ, он же развернутый анализ). Неважно, сдавали ли вы его из вены или из пальца, в результате вы получите некий набор букв и цифр, совершенно непонятный непосвященному. Что же он означает?

Разберем основные буквенные сочетания, которые встречаются на современных бланках общего анализа крови. Конечно, встречаются на современных бланках общего анализа крови же развернутый анализ. Неважно, сдавали ли вы его писано на листочке важно и интересно.

RBC (red blood cells – красные кровяные тельца) – эритроциты.

Это первое, на что мы обращаем внимание. Эритроциты – красные кровяные клетки, которые обеспечивают основную жизнедеятельность всех тканей организма, перенося кислород.

Норма: мужчины: 4,0-5,0·1012/л; женщины: 3,5-4,7·1012/л.

Повышение: или «эритроцитоз» можно наблюдать либо из-за повышения синтеза их в красном костном мозге, например, при опухолевом росте (эритрэмия), из-за заболеваний сердечно-сосудистой и легочной систем, которые приводят к сердечной или легочной недостаточности (как попытка организма компенсировать нехватку кислорода), вследствие сужения просвета почечной артерии, из-за обезвоживания организма (рвота, диарея, активное потоотделение).

Снижение: или «эритропения», причины которой, во-первых, – бедная питательными веществами и витаминами пища, во-вторых, – повышенное разрушение из-за кровотечения (как внешнего, так и внутреннего, которое может и не проявиться сразу), в-третьих, из-за наследственных ферментопатий или нарушения в ферментной системе, отвечающей за синтез эритроцитов, в-четвертых, вследствие гемолиза (разрушение клеток в результате интоксикации или аутоиммунные процессов, когда организм воспринимает собственные элементы как чужеродные), в-пятых, вследствие опухолевых заболеваний кроветворной системы.

WBC (white blood cells – белые кровяные тельца) – лейкоциты.

Это белые клетки крови, «защитные псы» организма, осуществляющие иммунный контроль, обезвреживание чужеродных элементов и избавление от вирусов и бактерий.

Норма: для мужчин и женщин 4,0*109/л–9,0*10/л.

Повышение: называется «лейкоцитоз» и говорит о том, что в организме протекает какая-либо воспалительная реакция. Также характерно для злокачественных опухолей, травм, инфаркта миокарда острой и подстрой фазы, периода обострения ревматизма, беременности (последний триместр) и после родового периода. Может выявляться после тяжелых физических нагрузок и во время менструаций

Снижение: или «лейкопения» может говорить о заболеваниях красного костного мозга опухолевой природы (лейкозы), о лучевой болезни после воздействия ионизирующего излучения, о вирусно-инфекционных заболеваниях (грипп, брюшной тиф, малярия, краснуха, корь, эпидемический паротит (свинка), вирусный гепатит), наблюдается при приеме противоопухолевых препаратов, как неотвратимый эффект. Всего есть 5 видов лейкоцитов: гранулоциты, содержащие в цитоплазме гранулы, которые окрашиваются специальными красителями (нейтрофилы, эозинофилы, базофилы) и агранулоциты, не имеющие специфических гранул (моноциты и лимфоциты).

GR% – относительное (%) содержание гранулоцитов и GR# – абсолютное содержание гранулоцитов. Рассмотрим отдельные из них:

NEUT% (NE%) (neutrophils) – относительное содержание нейтрофилов. Нейтрофилы – клетки, которые «обитают» в кровеносном русле и при необходимости переходят в ткань, становясь макрофагами, которые поглощают и переваривают чужеродные вирусы и бактерии.

Норма: сегментоядерные (зрелые) 47-72%, палочкоядерные (молодые) 1-6%.

Повышение: инфекционно-воспалительные процессы, инфаркт миокарда, хронические нарушения обмена веществ (сахарный диабет), прием иммуностимуляторов.

Снижение: инфекционные заболевания (брюшной тиф, бруцеллез, грипп, корь, ветряная оспа (ветрянка), краснуха, вирусный гепатит), заболевания крови, высокий уровень гормонов щитовидной железы (тиреотоксикоз), последствия химио- и радиотерапии.

Сдвиг лейкоцитарной формулы влево означает, что в крови появляются молодые, «незрелые» нейтрофилы, которые в норме присутствуют только в костном мозге. Такое бывает при легком и тяжелом течении инфекционных и воспалительных процессов, а также при острой кровопотере, дифтерии, пневмонии, скарлатине, сепсисе, интоксикации.

Сдвиг лейкоцитарной формулы вправо означает, что в крови увеличивается количество «старых» нейтрофилов (сегментоядерных), а также количество сегментов ядер становится больше пяти. Такая картина бывает у здоровых людей, проживающих на территориях, загрязненных радиационными отходами, а также при недостатке некоторых витаминов (В12, В6).

EO% – относительное содержание эозинофилов. Это клетки, которые очищают организма от токсических веществ, паразитов и помогают избавляться от раковых клеток.

Норма: 0-5%.

Повышение: в основном, при аллергиях, паразитарных и ревматических заболеваниях. Частый показатель наличия бронхиальной астмы.

Снижение: при интоксикации тяжелыми металлами, тяжелых гнойных процессах, говорит о начале воспалительного процесса.

BA% – относительное содержание базофилов. Это клетки, которые значительно крупнее остальных лейкоцитов, они принимают участие в формировании иммунологических воспалительных реакций замедленного типа. Да, это главные клетки, которые формируют аллергическую реакцию, вырабатывая вещества, вызывающие отек, гиперемию, воспаление.

Норма: 0-1%.

Повышение: при понижении гормонов щитовидной железы (гипотиреоз), онкологических заболеваниях крови (хронический милолейкоз), аллергиях, ветряной оспе, нефрозе.

LYM% (LY%) (lymphocyte) – относительное содержание лимфоцитов.

Норма: 19-37%.

Повышение (лимфоцитоз): вирусные инфекции, отравление, применение некоторых препаратов.

Снижение (лимфопения): туберкулез, волчанка, почечная недостаточность, иммунодефицит, последствия химио- и лучевой терапии.

MON% (MO%) (monocyte) – относительное содержание моноцитов. Это самые крупные клетки иммунной системы. Они распознают чужеродные вещества и обучают другие лейкоциты их распознавать.

Норма: 3-11%.

Повышение: вирусные инфекции, аутоиммунные заболевания, болезни кроветворной системы.

Снижение: апластическая анемия, последствия родов или хирургической операции, гнойные поражения.

HGB (Hb, hemoglobin) – гемоглобин, концентрация в цельной крови. Это вещество, которое содержится в эритроцитах, именно оно способно присоединять кислород (до 8 молекул за раз).

Норма: женщины: 120–140 г/л, мужчины: 130–160 г/л.

Повышение: обезвоживание, диабет, нарушение работы почек, пороки сердца и легкого, заболевание органов кроветворения.

Снижение: анемия, недостаток железа, недостаток витаминов, кровопотеря, истощение организма.

HCT (hematocrit) – гематокрит. Это процентное соотношение объема взятой крови к объему, который в ней занимают эритроциты. Определяется для того, чтобы можно было отличить изменение объема жидкости от относительного изменения объема эритроцитов в ней.

Норма: 38,0-49,0%.

Повышение: «сгущение» крови, увеличение содержания эритроцитов и уменьшение объема плазмы (см. эритроцитоз).

Снижение: «разжижение» крови, понижение содержания в ней эритроцитов (анемия, почечная недостаточность, 2-ая половина беременности), повышение объема плазмы вследствие усиленного потребления жидкости.

MCH – среднее содержание гемоглобина в отдельном эритроците. Индекс отражает то, насколько эритроциты наполнены гемоглобином. Важно для определения и отличия друг от друга разных типов анемии (например, гемолитической и железодефицитной).

Норма: 24–33 пикограмма.

Раньше использовался так называемый цветовой показатель (соотношение). Его норма составляет 0,85-1,05.

PLT (platelets – кровяные пластинки) – тромбоциты в абсолютных числах. Это кровяные тельца, представляющие собой куски от мегакариоцитов (гигантских клеток, располагающихся в красном костном мозге), которые отвечают за свертываемость крови.

Норма: 180-320*109/л.

Повышение: свертываемость крови усиливается при удалении селезенки, различных видах анемий, эритремии, состоянии после операций, физическом переутомлении.

Снижение: свертываемость крови падает при врожденных заболеваниях крови, аутоиммунных патологиях, тромбозе почечных вен, переливании крови, закупорке тромбами почечных вен и других состояниях.

СОЭ – скорость оседания эритроцитов. Наблюдается то, с какой скоростью происходит оседание эритроцитов и разделение прозрачной части (плазмы и белых кровяных телец) и эритроцитарной массы в столбике. Этот анализ говорит о состоянии мембраны эритроцитов (в норме мембраны имеют отрицательный заряд и отталкиваются, снижая скорость оседания), либо о количественном изменении белков крови, которые способны склеивать красные кровяные клетки в столбики, увеличивая скорость оседания. Показатель очень неспецифический, достаточно вариабельный и имеет множество проявлений при многих состояниях.

Норма: 2–12 мм/час.

Повышение: инфекционно-воспалительные заболевания, злокачественные опухоли, травмы, болезни почек, прием лекарственных препаратов.

Снижение: восстановление после болезни, истощение организма, тяжелые черепно-мозговые травмы, некоторые медикаменты (диклофенак, аспирин, иммунодепрессанты, гормоны).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *