Доктор Моррис

Естественные источники излучения

Навигация по статье

  • Естественные источники радиации
  • Космическое излучение
  • Излучение от радиоактивных природных изотопов
  • Общий фон радиации от естественных источников облучения
  • Радон
  • Влияние радона на живые организмы

Источники радиации и их влияние на живые и не живые объекты. Искусственные источники радиации, естественные источники радиоактивных излучений, природный радиационный фон, космическая и солнечная радиация. Природные изотопы, радон, углерод 14 и калий 40.

Источники радиоактивных излучений по природе своего происхождения, можно разделить на две основных группы:

  • естественные источники радиации
  • техногенные источники, созданные человеком или спровоцированные его деятельностью

Естественные источники радиации

Естественные источники радиации — это объекты окружающий среды и среды обитания человека, которые содержат природные радиоактивные изотопы и излучают радиацию.

К естественным источникам радиации относятся:

  • космическое излучение и солнечная радиация
  • излучение от радиоактивных изотопов, находящихся в Земной коре и в окружающих нас объектах

Космическое излучение

Космическое излучение — это поток элементарных частиц, излучаемых космическими объектами в результате их жизни или при взрывах звезд.

Источником космического излучения в основном являются взрывы «сверхновых», а также различные пульсары, черные дыры и другие объекты вселенной, в недрах которых идут термоядерные реакции. Благодаря непостижимо большим расстояниям до ближайших звезд, которые являются источниками космического излучения, происходит рассеивание космического излучения в пространстве и поэтому падает интенсивность (плотность) космического излучения. Проходя расстояния в тысячи световых лет, на своем пути космическое излучение взаимодействует с атомами межзвездного пространства, в основном это атомы водорода, и в процессе взаимодействия теряют часть своей энергии и меняют свое направление. Несмотря на это, до нашей планеты все равно со всех сторон доходит космическое излучений невероятно высоких энергий.

Космическое излучение состоит:

  • на 87% из протонов (протонное излучение)
  • на 12% из ядер атомов гелия (альфа излучение)
  • Оставшийся 1 % — это различные ядра атомов более тяжелых элементов, которые образовались при взрыве звезд, в ее недрах, за мгновение до взрыва
  • Так же в космическом излучении присутствуют в очень небольшом объеме — электроны, позитроны, фотоны и нейтрино

Все это продукты термоядерного синтеза происходящего в недрах звезд или последствия взрыва звезд.

Свой вклад в космическое излучение вносит ближайшая к нам звезда — Солнце. Энергия излучения от Солнца на несколько порядков ниже, чем энергия космического излучения, приходящего к нам из глубин космоса. Но плотность солнечной радиации выше плотности космического излучения, приходящего к нам из глубин космоса.

Состав излучения от солнца (солнечная радиация) отличается от основного космического излучения и состоит:

  • на 99% из протонов (протонное излучение)
  • на 1 % из ядер атомов гелия (альфа излучение)

Все это продукты термоядерного синтеза проходящего в недрах Солнца.

Как мы видим, космическое излучение состоит из наиболее опасных видов радиоактивного излучения — это протонное и альфа излучение.

Если Земля не обладала бы газовой атмосферой и магнитным полем, то шансов у биологических видов на выживание просто бы не было

Но благодаря магнитному полю Земли, большая часть космического излучения отклоняется магнитным полем и просто огибает Земную атмосферу проходя мимо. Оставшаяся часть космического излучения, проходя сквозь атмосферу Земли, взаимодействуя с атомами газов атмосферы, теряет свою энергию. В результате множественных атомных взаимодействий и превращений до поверхности Земли вместо космического излучения, состоящего из протонного и альфа излучения, доходят потоки менее опасных и обладающими на порядки меньшими энергиями — это потоки электронов, фотонов и мюонов.

Что получаем в итоге?

В итоге, космическое излучение проходя защитные механизмы Земли, не только теряет почти всю свою энергию, но и претерпевает физическое изменение в процессе ядерного взаимодействия с газами атмосферы, превращаясь в фактически безопасное, обладающее низкой энергией излучение в виде электронов (бета излучение), фотонов (гамма излучение)и мюонов.

В пункте 9.1 МУ 2.6.1.1088-02 указано нормативное значение эквивалентной дозы радиации получаемой человеком от космического излучения, это

0,4 мЗв/год или

400 мкЗв/год или

0,046 мкЗв/час

Излучение от радиоактивных природных изотопов

На нашей планете можно выделить 23 радиоактивных изотопа, которые обладают большим периодом полураспада и которые наиболее часто встречаются в земной коре. Большая часть радиоактивных изотопов содержится в породе в очень малых количествах и концентрациях, и доля создаваемого ими облучения пренебрежимо мала. Но есть несколько природных радиоактивных элементов, которые оказывают влияние на человека.

Рассмотрим эти элементы и степень их влияния на человека.

Радиоактивные изотопы, облучения от которых нельзя избежать:

  • Калий 40К (β и γ излучение).
    Усваивается вместе с продуктами питания и питьевой водой. Содержится в нашем организме.
    Годовая нормативная доза — 0,17 мЗв/год — пункт 7.6 МУ 2.6.1.1088-02.
  • Углерод 14С.
    Усваивается вместе с продуктами питания. Содержится в нашем организме.
    Годовая нормативная доза — 0,012 мЗв/год — приложение №1 таблица 1.5 СанПиН 2.6.1.2800-10

Радиоактивные изотопы, облучения от которых можно избежать организационными мероприятиями:

  • Газ радон 222Rn (α излучение) и Торон 220Rn (α излучение) и их продукты радиоактивного распада.
    Содержится в газах, поднимающихся из недр земли. Может содержаться в водопроводной воде, если она берется из источников, расположенных глубоко под землей (артезианские источники).
    Годовая нормативная допустимая доза 0,2 мЗв/час = 1,752 мЗв/год — пункты 5.3.2 и 5.3.3 НРБ 99/2009 (СанПиН 2.6.1.2523-09)

Все остальные природные радиоизотопы, содержащиеся как в Земной коре, так и в атмосфере, оказывают пренебрежительно малое влияния на человека.

Если человек, добыл, переработал и выделил природные изотопы из руды или других источников, а затем их применил в строительных конструкция, минеральных удобрениях, машинах и механизмах и так далее, то действие этих изотопов уже будет техногенным, а не естественным и на них должны распространяться нормы для техногенных источников.

Общий фон радиации от естественных источников облучения

Если просуммировать действие всех рассмотренных природных источников излучения, и взять за основу допустимые нормативные дозы радиации от каждого из них, то получим допустимое нормативное значение общего радиационного фона от природных источников радиации.

Получили, что в соответствии с нормативными документами, общий радиационный фон от природных источников радиации составляет — 2,346 мЗв/год или 0,268 мкЗв/час.

Мы уже рассмотрели, что есть источники природной радиации, действия которых нельзя исключить в нормальной повседневной жизни, но есть источники, действия которых можно избежать, и к ним относится — радон 222Rn и торон 220Rn. Действие радона рассмотрим ниже отдельно, а пока посчитаем, что у нас получится с нормальным радиационным фоном с исключенным действием радона и торона.

Если действие радона исключаем, как оно и должно быть, то получаем, что нормальный радиационный фон от природных источников радиации не должен превышать

0,594 мЗв/год или

0,07 мкЗв/час

Это значение и есть безопасный естественный радиационный фон, который должен действовать и действовал до начала освоения человеком атома и загрязнения им окружающей среды нашего обитания радиоактивными отходами, которые рассредоточены по всему миру в результате испытания атомных бомб, внедрением атомной энергетики и других техногенных действий человека.

А теперь можете сравнить полученное значение (нормативного, а не выдуманного) нормального радиационного фона в 0,07 мкЗв/час с приемлемым (допустимым) естественным радиационным фоном по нормативной документации в 0,57 мкЗв/час — эта норма подробно описана в разделе «Единицы измерения и дозы» на данном сайте.

Почему такая большая разница, аж в 8 раз, и к тому же в одних и тех же нормативных документах. Да все очень просто! Техногенное действия человека, привели к тому, что радиоактивные элементы стали массово применяться от техники, строительства, минеральных удобрений до атомных взрывов и АЭС с их авариями и сбросами. В результате, мы сами себе создали среду, в которой нас окружают радиоактивные изотопы с периодом полураспада до нескольких тысяч лет, то есть уже хватит не только нам, но и сотням поколений людей после нас.

То есть, уже трудно найти территории на Земле с действительно нормальным естественным радиационным фоном (но пока еще есть такие). Вот поэтому, нормативные документы и допускают проживание человека в обстановке с приемлемым уровнем радиации. Он не безопасный, он именно приемлемый.

И с каждым годом этот приемлемый уровень, в результате техногенного действия человека, будет только увеличиваться. Тенденций к его уменьшению нет, а вот статистика по онкологическому действию даже малых доз радиации, становится с каждым годом подробней и устрашающей, и поэтому менее доступной для широких масс.

На данный момент уже звучат, пока еще не официальные заявления, но от официальных источников, предложения по увеличению допустимого уровня радиации.

Можно к примеру, ознакомиться с «трудом» Акатова А. А., Коряковского Ю. С., сотрудников информационного центра «Росатома», в котором они выдвигают «свои теории» о безопасности доз в 500 мЗв/год, то есть 57 мкЗв/час, что выше максимального предельно допустимого нормативного уровня радиации на данный момент в 100 раз.

Информация с «трудом» «авторов» взята с ресурса: http://www.myatom.ru

А на фоне подобных заявлений, в России каждый год регистрируется до 500 000 новых случаев заболевания человека раком. И на основании статистики ВОЗ, в ближайшие годы ожидается увеличение случаев первичных заболеваний раком на 70%. Без всяких сомнений, среди причин, вызывающих рак, облучение радиацией и заражение радиоактивными изотопами, занимает лидирующее место.

По данным ВОЗ, только в 2014 году на нашей планете умерли более 10 000 000 человек от раковых заболеваний, это почти 25% от общего количества умерших. Это 19 человек, умирающих в мире от рака каждую минуту.

И это только официальная статистика по зарегистрированным случаям, с поставленным диагнозом. Можно только с ужасом гадать, каковы реальные цифры.

Радон

Радон тяжелый газ, редко встречающийся в природе, не имеет запаха, вкуса и цвета.

Радон относится к числу наименее распространенных химических элементов на нашей планете.

Плотность радона в 8 раз выше плотности воздуха. Радон растворим в воде, крови и других биологических жидкостях нашего организма. На холодных поверхностях радон легко конденсируется в бесцветную фосфоресцирующую жидкость. Твердый радон светится бриллиантово-голубым светом. Период полураспада 3,82 дня.

Основным источником радона, являются горные и осадочные породы, содержащие уран 238U. В процессе цепочки распадов радиоактивных изотопов уранового ряда, образуется радиоактивный элемент радий 226Ra, распадаясь который и выделяет газ радон 222Rn. Радон накапливается в тектонических нарушениях, куда он поступает по системам микротрещин из горных пород. Радон не распространен по Земной коре равномерно, а скапливается наподобие всем известного природного газа, только в несравнимо меньших объемах и концентрациях.

Сразу отметим, что радон не содержится повсюду вокруг нас, он скапливается в пустотах пород, или в незначительных количествах в порах этой породы, а далее способен выделяться наружу, при нарушении герметичности этих пустот (геологические разломы, трещины). Так же нужно обратить внимание, что радон образовывается только в грунтах и почвах, содержащих радиоактивные элементы — уран 238U и радий 226Ra. То есть, если в Вашем регионе содержание 226Ra и урана 238U в грунтах, почве и скальных породах в очень малых количествах, либо не содержится вовсе, то угрозы облечения радиацией от радона — нет, а соответственно для таких регионов норма естественного радиационного фона это 0,07 мкЗв/час.

Облучение радоном происходит в замкнутых пространствах, где способен накапливаться газ радон, поднимающийся из трещин и разломов в земной коре. К таким замкнутым пространствам можно отнести: шахты, пещеры, подземные сооружения (бункеры, землянки, погреба и т.п.), жилые и не жилые помещения с нарушенной гидроизоляцией фундамента и плохо работающей вентиляцией.

Как попадает радон в помещение?

Если к примеру жилой дом расположен в районе скопления радона и под фундаментом дома в земной коре имеется трещина, то радон может проникать, сначала в подвальные помещения, а далее через систему вентиляции в выше расположенные помещения (квартиры).

Попадание радона в жилое помещение возможно, если будут нарушены сразу несколько строительных норм при строительстве жилого здания:

  • Перед строительством любого жилого объекта должно проводится обследование земельного участка и выдаваться официальное заключение об соответствии нормам радонового излучения. Если выделения радона выше нормы, то должны быть приняты дополнительные строительные решения по защите. Либо вообще строительство жилых помещений запрещается на данном земельном участке. Без данного заключения, нельзя получить заключение государственной экспертизы на строительный объект и получить разрешение на строительство.
  • При проектировании и строительстве здания обязательно предусматривается гидроизоляция фундамента, которая предотвращает попадание не только влаги, но и радона в подвальные помещения, а затем внутрь квартиры. Эта норма часто нарушается при строительстве и является одной из основных причин попадания радона в жилые помещения.
  • В жилых помещениях должна хорошо работать система естественной приточно-вытяжной вентиляции. Часто, из-за нарушения при строительстве или при проведении ремонтных работ, система вентиляции оказывается не работоспособной. В результате, в квартиру из вытяжного канала вентиляции поступает поток воздуха, который захватывается из подвального помещения дома вместе с радоном.

Если все строительные нормы соблюдены, то даже наличие залежей радона под жилым домом не приведет к дополнительному облучению радиацией, радон просто не будет попадать в жилые помещения. То есть облучение радоном происходит только при нарушении норм проектирования и строительства зданий и сооружений, из-за халатности ответственных лиц или жажды сэкономить на строительстве.

При нормальных условиях человек не должен подвергаться действию радона.

Если человек подвергается действию радона, то в 99% случаев это вызвано нарушением действующих норм и правил.

Не стоит пренебрегать опасностью радона. Он опасен! Если есть основания и сомнения, лучше провести замеры радона у себя в жилом помещении, особенно если это коттедж или частный дом.

Влияние радона на живые организмы.

Радон опасен для живых организмов. Попадая внутрь организма через дыхательные пути, радон растворяется в крови, а продукты его распада быстро разносятся по всему телу и приводят к внутреннему массированному облучению. Сам радон распадается на другие радиоактивные элементы в течении 4 суток. А радиоактивные продукты распада радона впоследствии облучают организм в течении 44 лет. Наиболее опасными продуктами распада радона являются радиоактивные изотопы полония 218Po и 210Po.

Радон занимает первое место среди причин вызывающих рак легких. Так же установлено что радон накапливается в мозговых тканях человека, что так же приводит к развитию рака головного мозга. И это далеко не все примеры губительного действия радона на организм человека.

1. Радиоактивность, радиация и радиационный фон.

1.1. Что такое радиоактивность и радиация?

Радиоактивность — неустойчивость ядер некоторых атомов, проявляющаяся в их способности к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения или радиацией. Далее мы будем говорить лишь о той радиации, которая связана с радиоактивностью.

Радиация, или ионизирующее излучение — это частицы и гамма-кванты, энергия которых достаточно велика, чтобы при воздействии на вещество создавать ионы разных знаков. Радиацию нельзя вызвать с помощью химических реакций.

1.2. Какая бывает радиация?

Различают несколько видов радиации.

Альфа-частицы: относительно тяжелые, положительно заряженные частицы, представляющие собой ядра гелия.

Бета-частицы — это просто электроны.

Гамма-излучение имеет ту же электромагнитную природу, что и видимый свет, однако обладает гораздо большей проникающей способностью.

Нейтроны — электрически нейтральные частицы, возникают главным образом непосредственно вблизи работающего атомного реактора, куда доступ, естественно, регламентирован.

Рентгеновское излучение подобно гамма-излучению, но имеет меньшую энергию. Кстати, наше Солнце — один из естественных источников рентгеновского излучения, но земная атмосфера обеспечивает от него надежную защиту.

Ультрафиолетовое излучение и излучение лазеров в нашем рассмотрении не являются радиацией.

Заряженные частицы очень сильно взаимодействуют с веществом, поэтому, с одной стороны, даже одна альфа-частица при попадании в живой организм может уничтожить или повредить очень много клеток, но, с другой стороны, по той же причине, достаточной защитой от альфа- и бета-излучения является любой, даже очень тонкий слой твердого или жидкого вещества — например, обычная одежда (если, конечно, источник излучения находится снаружи).

Следует различать радиоактивность и радиацию. Источники радиации — радиоактивные вещества или ядерно-технические установки (реакторы, ускорители, рентгеновское оборудование и т.п.) — могут существовать значительное время, а радиация существует лишь до момента своего поглощения в каком-либо веществе.

1.3. К чему может привести воздействие радиации на человека?

Воздействие радиации на человека называют облучением. Основу этого воздействия составляет передача энергии радиации клеткам организма.

Облучение может вызвать нарушения обмена веществ, инфекционные осложнения, лейкоз и злокачественные опухоли, лучевое бесплодие, лучевую катаракту, лучевой ожог, лучевую болезнь.

Последствия облучения сильнее сказываются на делящихся клетках, и поэтому для детей облучение гораздо опаснее, чем для взрослых.

Что же касается часто упоминаемых генетических (т.е. передаваемых по наследству) мутаций как следствие облучения человека, то таковых еще ни разу не удалось обнаружить. Даже у 78000 детей тех японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не было констатировано какого-либо увеличения числа случаев наследственных болезней (книга «Жизнь после Чернобыля» шведских ученых С.Кулландера и Б.Ларсона).

Следует помнить, что гораздо больший РЕАЛЬНЫЙ ущерб здоровью людей приносят выбросы предприятий химической и сталелитейной промышленности, не говоря уже о том, что науке пока неизвестен механизм злокачественного перерождения тканей от внешних воздействий.

1.4. Как радиация может попасть в организм?

Организм человека реагирует на радиацию, а не на ее источник.

Те источники радиации, которыми являются радиоактивные вещества, могут проникать в организм с пищей и водой (через кишечник), через легкие (при дыхании) и, в незначительной степени, через кожу, а также при медицинской радиоизотопной диагностике. В этом случае говорят о внутреннем обучении.

Кроме того, человек может подвергнуться внешнему облучению от источника радиации, который находится вне его тела.

Внутреннее облучение значительно опаснее внешнего.

1.5. Передается ли радиация как болезнь?

Радиацию создают радиоактивные вещества или специально сконструированное оборудование. Сама же радиация, воздействуя на организм, не образует в нем радиоактивных веществ, и не превращает его в новый источник радиации. Таким образом, человек не становится радиоактивным после рентгеновского или флюорографического обследования. Кстати, и рентгеновский снимок (пленка) также не несет в себе радиоактивности.

Исключением является ситуация, при которой в организм намеренно вводятся радиоактивные препараты (например, при радиоизотопном обследовании щитовидной железы), и человек на небольшое время становится источником радиации. Однако препараты такого рода специально выбираются так, чтобы быстро терять свою радиоактивность за счет распада, и интенсивность радиации быстро спадает.

Конечно, можно «испачкать» тело или одежду радиоактивной жидкостью, порошком или пылью. Тогда некоторая часть такой радиоактивной «грязи» — вместе с обычной грязью — может быть передана при контакте другому человеку. В отличие от болезни, которая, передаваясь от человека к человеку, воспроизводит свою вредоносную силу (и даже может привести к эпидемии), передача грязи приводит к ее быстрому разбавлению до безопасных пределов.

1.6. В каких единицах измеряется радиоактивность?

Мерой радиоактивности служит активность. Измеряется в Беккерелях (Бк), что соответствует 1 распаду в секунду. Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или объема (Бк/куб.м).

Также встречается еще такая единица активности, как Кюри (Ки). Это — огромная величина: 1 Ки = 37000000000 Бк.

Активность радиоактивного источника характеризует его мощность. Так, в источнике активностью 1 Кюри происходит 37000000000 распадов в секунду.

Как было сказано выше, при этих распадах источник испускает ионизирующее излучения. Мерой ионизационного воздействия этого излучения на вещество является экспозиционная доза. Часто измеряется в Рентгенах (Р). Поскольку 1 Рентген — довольно большая величина, на практике удобнее пользоваться миллионной (мкР) или тысячной (мР) долями Рентгена.

Действие распространенных бытовых дозиметров основано на измерении ионизации за определенное время, то есть мощности экспозиционной дозы. Единица измерения мощности экспозиционной дозы — микроРентген/час.

Мощность дозы, умноженная на время, называется дозой. Мощность дозы и доза соотносятся так же как скорость автомобиля и пройденное этим автомобилем расстояние (путь).

Для оценки воздействия на организм человека используются понятия эквивалентная доза и мощность эквивалентной дозы. Измеряются, соответственно, в Зивертах (Зв) и Зивертах/час. В быту можно считать, что 1 Зиверт = 100 Рентген. Необходимо указывать на какой орган, часть или все тело пришлась данная доза.

Можно показать, что упомянутый выше точечный источник активностью 1 Кюри (для определенности рассматриваем источник цезий-137) на расстоянии 1 метр от себя создает мощность экспозиционной дозы приблизительно 0,3 Рентгена/час, а на расстоянии 10 метров — приблизительно 0,003 Рентгена/час. Уменьшение мощности дозы с увеличением расстояния от источника происходит всегда и обусловлено законами распространения излучения.

Теперь абсолютно понятна типичная ошибка средств массовой информации, сообщающих: «Сегодня на такой-то улице обнаружен радиоактивный источник в 10 тысяч рентген при норме 20».

Во-первых, в Рентгенах измеряется доза, а характеристикой источника является его активность. Источник в столько-то Рентген — это то же самое, что мешок картошки весом в столько-то минут.

Поэтому в любом случае речь может идти только о мощности дозы от источника. И не просто мощности дозы, а с указанием того, на каком расстоянии от источника эта мощность дозы измерена.

Далее можно высказать следующие соображения. 10 тысяч рентген/час — достаточно большая величина. С дозиметром в руках ее вряд ли можно измерить, так как при приближении к источнику дозиметр прежде покажет и 100 Рентген/час, и 1000 Рентген/час! Весьма трудно предположить, что дозиметрист продолжит приближаться к источнику. Поскольку дозиметры измеряют мощность дозы в микроРентгенах/час, то можно предполагать, что и в данном случае речь идет о 10 тысяч микроРентген/час = 10 миллиРентген/час = 0,01 Рентгена/час. Подобные источники, хотя и не представляют смертельной опасности, на улице попадаются реже, чем сторублевые купюры, и это может быть темой для информационного сообщения. Тем более что упоминание о «норме 20» можно понимать как условную верхнюю границу обычных показаний дозиметра в городе, т.е. до 20 микроРентген/час.

Поэтому правильно сообщение, по-видимому, должно выглядеть так: «Сегодня на такой-то улице обнаружен радиоактивный источник, вплотную к которому дозиметр показывает 10 тысяч микрорентген в час, при том что среднее значение радиационного фона в нашем городе не превосходит 20 микрорентген в час».

1.7. Что такое изотопы?

В таблице Менделеева более 100 химических элементов. Почти каждый из них представлен смесью стабильных и радиоактивных атомов, которые называют изотопами данного элемента. Известно около 2000 изотопов, из которых около 300 — стабильные.

Например, у первого элемента таблицы Менделеева — водорода — существуют следующие изотопы:

— водород Н-1 (стабильный),

— дейтерий Н-2 (стабильный),

— тритий Н-3 (радиоактивный, период полураспада 12 лет).

Радиоактивные изотопы обычно называют радионуклидами.

1.8. Что такое период полураспада?

Число радиоактивных ядер одного типа постоянно уменьшается во времени благодаря их распаду.

Скорость распада принято характеризовать периодом полураспада: это время, за которое число радиоактивных ядер определенного типа уменьшится в 2 раза.

Абсолютно ошибочной является следующая трактовка понятия «период полураспада»: «если радиоактивное вещество имеет период полураспада 1 час, это значит, что через 1 час распадется его первая половина, а еще через 1 час — вторая половина, и это вещество полностью исчезнет (распадется)».

Для радионуклида с периодом полураспада 1 час это означает, что через 1 час его количество станет меньше первоначального в 2 раза, через 2 часа — в 4, через 3 часа — в 8 раз и т.д., но полностью не исчезнет никогда. В такой же пропорции будет уменьшается и радиация, излучаемая этим веществом. Поэтому можно прогнозировать радиационную обстановку на будущее, если знать, какие и в каком количестве радиоактивные вещества создают радиацию в данном месте в данный момент времени.

У каждого радионуклида — свой период полураспада, он может составлять как доли секунды, так и миллиарды лет. Важно, что период полураспада данного радионуклида постоянен, и изменить его невозможно.

Образующиеся при радиоактивном распаде ядра, в свою очередь, также могут быть радиоактивными. Так, например, радиоактивный радон-222 обязан своим происхождением радиоактивному урану-238.

Иногда встречаются утверждения, что радиоактивные отходы в хранилищах полностью распадутся за 300 лет. Это не так. Просто это время составит примерно 10 периодов полураспада цезия-137, одного из самых распространенных техногенных радионуклидов, и за 300 лет его радиоактивность в отходах снизится почти в 1000 раз, но, к сожалению, не исчезнет.

1.9 Что вокруг нас радиоактивно?

Воздействие на человека тех или иных источников радиации поможет оценить следующая диаграмма (по данным А.Г.Зеленкова, 1990).

По происхождению радиоактивность делят на естественную (природную) и техногенную.

а) Естественная радиоактивность

Естественная радиоактивность существует миллиарды лет, она присутствует буквально повсюду. Ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Любой человек слегка радиоактивен: в тканях человеческого тела одним из главных источников природной радиации являются калий-40 и рубидий-87, причем не существует способа от них избавиться.

Учтем, что современный человек до 80% времени проводит в помещениях — дома или на работе, где и получает основную дозу радиации: хотя здания защищают от излучений извне, в стройматериалах, из которых они построены, содержится природная радиоактивность. Существенный вклад в облучение человека вносит радон и продукты его распада.

б) Радон

Основным источником этого радиоактивного инертного газа является земная кора. Проникая через трещины и щели в фундаменте, полу и стенах, радон задерживается в помещениях. Другой источник радона в помещении — это сами строительные материалы (бетон, кирпич и т.д.), содержащие естественные радионуклиды, которые являются источником радона. Радон может поступать в дома также с водой (особенно если она подается из артезианских скважин), при сжигании природного газа и т.д.

Радон в 7,5 раз тяжелее воздуха. Как следствие, концентрация радона в верхних этажах многоэтажных домов обычно ниже, чем на первом этаже.

Основную часть дозы облучения от радона человек получает, находясь в закрытом, непроветриваемом помещении; регулярное проветривание может снизить концентрацию радона в несколько раз.

При длительном поступлении радона и его продуктов в организм человека многократно возрастает риск возникновения рака легких.

Сравнить мощность излучения различных источников радона поможет следующая диаграмма.

в) Техногенная радиоактивность

Техногенная радиоактивность возникает вследствие человеческой деятельности.

Осознанная хозяйственная деятельность, в процессе которой происходит перераспределение и концентрирование естественных радионуклидов, приводит к заметным изменениям естественного радиационного фона. Сюда относится добыча и сжигание каменного угля, нефти, газа, других горючих ископаемых, использование фосфатных удобрений, добыча и переработка руд.

Так, например, исследования нефтепромыслов на территории России показывают значительное превышение допустимых норм радиоактивности, повышение уровней радиации в районе скважин, вызванное отложением на оборудовании и прилегающем грунте солей радия-226, тория-232 и калия-40. Особенно загрязнены действующие и отработавшие трубы, которые нередко приходится классифицировать как радиоактивные отходы.

Такой вид транспорта, как гражданская авиация, подвергает своих пассажиров повышенному воздействию космического излучения.

И, конечно, свой вклад дают испытания ядерного оружия, предприятия атомной энергетики и промышленности.

Безусловно, возможно и случайное (неконтролируемое) распространение радиоактивных источников: аварии, потери, хищения, распыление и т.п. Таки ситуации, к счастью, ОЧЕНЬ РЕДКИ. Кроме того, их опасность не следует преувеличивать.

1.10. Является ли компьютер источником радиации?

Единственной частью компьютера, в отношении которой можно говорить о радиации, являются только мониторы на электронно-лучевых трубках (ЭЛТ); дисплеев других типов (жидкокристаллических, плазменных и т.п.) это не касается.

Мониторы, наряду с обычными телевизорами на ЭЛТ, можно считать слабым источником рентгеновского излучения, возникающим на внутренней поверхности стекла экрана ЭЛТ. Однако благодаря большой толщине этого же стекла, оно же и поглощает значительную часть излучения. До настоящего времени не обнаружено никакого влияния рентгеновского излучения мониторов на ЭЛТ на здоровье, тем не менее все современные ЭЛТ выпускаются с условно безопасным уровнем рентгеновского излучения.

В настоящее время в отношении мониторов общепризнанными для всех производителей являются шведские национальные стандарты «MPR II», «TCO-92», -95, -99. Эти стандарты, в частности, регламентируют электрические и магнитные поля от мониторов.

Что касается термина «low radiation» («низкий уровень излучения»), то это не стандарт, а всего лишь декларация изготовителя о том, что он предпринял нечто, лишь ему известное, с тем чтобы уменьшить излучение. Аналогичный смысл имеет менее распространенный термин «low emission».

1.11. Что такое «нормальный радиационный фон» или «нормальный уровень радиации»?

На Земле существуют населенные области с повышенным радиационным фоном.

Это, например, высокогорные города Богота, Лхаса, Кито, где уровень космического излучения примерно в 5 раз выше, чем на уровне моря.

Это также песчаные зоны с большой концентрацией минералов, содержащих фосфаты с примесью урана и тория — в Индии (штат Керала) и Бразилии (штат Эспириту-Санту).

Можно упомянуть участок выхода вод с высокой концентрацией радия в Иране (г. Ромсер).

Хотя в некоторых из этих районов мощность поглощенной дозы в 1000 раз превышает среднюю по поверхности Земли, обследование населения не выявило сдвигов в структуре заболеваемости и смертности.

Кроме того, даже для конкретной местности не существует «нормального фона» как постоянной характеристики, его нельзя получить как результат небольшого числа измерений.

В любом месте, даже для неосвоенных территорий, где «не ступала нога человека», радиационный фон изменяется от точки к точке, а также в каждой конкретной точке со временем. Эти колебания фона могут быть весьма значительными. В обжитых местах дополнительно накладываются факторы деятельности предприятий, работы транспорта и т.д. Например, на аэродромах, благодаря высококачественному бетонному покрытию с гранитным щебнем, фон, как правило, выше, чем на прилегающей местности.

Измерения радиационного фона в городе Минске позволяют указать ТИПИЧНЫЕ значение фона на улице (открытой местности) — 8 — 12 мкР/час, в помещении — 15 — 20 мкР/час.

1.12. Как защититься от радиации? Помогает ли от радиации алкоголь?

От источника радиации защищаются временем, расстоянием и веществом.

Временем — вследствие того, что чем меньше время пребывания вблизи источника радиации, тем меньше полученная от него доза облучения.

Расстоянием — благодаря тому, что излучение уменьшается с удалением от компактного источника (пропорционально квадрату расстояния). Если на расстоянии 1 метр от источника радиации дозиметр фиксирует 1000 мкР/час, то уже на расстоянии 5 метров показания снизятся приблизительно до 40 мкР/час.

Веществом — необходимо стремиться, чтобы между Вами и источником радиации оказалось как можно больше вещества: чем его больше и чем оно плотнее, тем большую часть радиации оно поглотит.

Что касается главного источника облучения в помещениях — радона и продуктов его распада, то регулярное проветривание позволяет значительно уменьшить их вклад в дозовую нагрузку.

Кроме того, если речь идет о строительстве или отделке собственного жилья, которое, вероятно, прослужит не одному поколению, следует постараться купить радиационно безопасные стройматериалы — благо их ассортимент ныне чрезвычайно богат.

Алкоголь, принятый незадолго до облучения, в некоторой степени способен ослабить последствия облучения. Однако его защитное действие уступает современным противорадиационным препаратам.

1.13. Что измеряет и чего не измеряет дозиметр?

Дозиметр измеряет мощность дозы ионизирующего излучения непосредственно в том месте, где он находится. Основное предназначение бытового дозиметра — измерение мощности дозы в том месте, где этот дозиметр находится (в руках человека, на грунте и т.д.) и проверка тем самым на радиоактивность подозрительных предметов. Однако скорее всего, Вам удастся заметить только достаточно серьезные повышения мощности дозы.

Поэтому индивидуальный дозиметр поможет прежде всего тем, кто часто бывает в районах, загрязненных в результате аварии на ЧАЭС (как правило, все эти места хорошо известны).

Кроме того, такой прибор может быть полезен в незнакомой удаленной от цивилизации местности (на пример при сборе ягод и грибов в достаточно «диких» местах), при выборе места для строительства дома, для предварительной проверки привозного грунта при ландшафтном благоустройстве. Повторим, однако, что в этих случаях полезен он будет только при весьма существенных радиоактивных загрязнениях, которые встречаются нечасто.

Не очень сильные, но тем не менее небезопасные загрязнения бытовым дозиметром обнаружить очень трудно. Для этого нужны совершенно другие методы, которые могут использовать только специалисты.

Относительно возможности проверять с помощью бытового дозиметра соответствие радиационных параметров установленным нормам можно сказать следующее.

Дозовые показатели (мощность дозы в помещениях, мощность дозы на местности) для отдельных точек проверить можно. Однако бытовым дозиметром очень трудно обследовать все помещение и добиться уверенности в том, что не пропущен локальный источник радиоактивности.

Почти бесполезно пытаться измерять радиоактивность продуктов питания или стройматериалов с помощью бытового дозиметра. Дозиметр способен выявить разве что ОЧЕНЬ СИЛЬНО загрязненные продукты или строительные материалы, содержание радиоактивности в которых в десятки раз превосходит допустимые нормы. Напомним, что для продуктов и строительных материалов нормируется не мощность дозы, а содержание радионуклидов, а дозиметр принципиально не позволяет измерять этот параметр. Здесь опять же нужны другие методы и работа специалистов.

1.14 Как правильно пользоваться дозиметром?

Следует пользоваться дозиметром в соответствии с прилагаемой к нему инструкцией.

Также необходимо учитывать, что при любых измерениях радиации присутствует естественный радиационный фон. Поэтому сначала выполняют измерение дозиметром уровня фона, характерного для данного участка местности (на достаточном удалении от предполагаемого источника радиации), после чего выполняют измерения уже в присутствии предполагаемого источника радиации. Наличие устойчивого превышения над уровнем фона может свидетельствовать об обнаружении радиоактивности.

В том, что показания дозиметра в квартире больше в 1,5 — 2 раза, чем на улице, нет ничего необычного.

Кроме того, необходимо учитывать, что при измерениях на «уровне фона» в одном и том же месте прибор может показать, например, 8, 15 и 10 мкР/час. Поэтому для получения достоверного результата рекомендуют провести несколько измерений и затем вычислить среднее арифметическое. В нашем примере среднее составит (8+15+10)/3 = 11 мкР/час.

1.15 Какие бывают дозиметры?

В продаже можно встретить как бытовые, так и профессиональные дозиметры. Последние имеют целый ряд принципиальных преимуществ. Однако, эти приборы весьма дороги (в десять и более раз дороже бытового дозиметра), а ситуации, когда эти преимущества могут быть реализованы, крайне редки в быту. Поэтому приобретать надо бытовой дозиметр.

Особо следует сказать о радиометрах для измерения активности радона: хотя они бывают только в профессиональном исполнении, но их использование в быту может быть оправданным.

Подавляющее большинство дозиметров являются прямопоказывающими, т.е. с их помощью можно получить результат сразу после измерения. Существуют и непрямопоказывающие дозиметры, не имеющие никаких устройств питания и индикации, исключительно компактные (часто в виде брелока). Их предназначение — индивидуальный дозиметрический контроль на радиационно-опасных объектах и в медицине. Поскольку провести перезарядку такого дозиметра или считать его показания можно только с помощью специальной стационарной аппаратуры, его нельзя использовать для принятия оперативных решений.

Дозиметры бывают беспороговые и пороговые. Последние позволяют обнаружить только превышение предустановленного изготовителем нормативного уровня радиации по принципу «да-нет» и благодаря этому просты и надежны в эксплуатации, стоят дешевле беспороговых примерно в 1,5 — 2 раза.

Как правило, беспороговые дозиметры можно эксплуатировать и в пороговом режиме.

Бытовые дозиметры в основном различаются по следующим параметрам:

типы регистрируемых излучений — только гамма, или гамма и бета;

тип блока детектирования — газоразрядный счетчик (также известен как счетчик Гейгера) или сцинтилляционный кристалл/пластмасса; количество газоразрядных счетчиков варьируется от 1 до 4-х;

размещение блока детектирования — выносной или встроенный;

наличие цифрового и/или звукового индикатора;

время одного измерения — от 3 до 40 секунд;

наличие тех или иных режимов измерения и самодиагностики;

габариты и вес;

цена, в зависимости от комбинации вышеперечисленных параметров.

1.16 Что делать, если дозиметр «зашкаливает» или его показания необычно большие?

1. Убедиться, что при удалении дозиметра от того места, где его «зашкаливает», показания прибора приходят в норму.

2. Убедиться, что дозиметр исправен (большинство приборов такого рода имеют специальный режим самодиагностики).

3. Нормальную работоспособность электрической схемы дозиметра могут частично или полностью нарушать замыкания, протечки батареек, сильные внешние электромагнитные поля. Если есть возможность, желательно продублировать измерения с помощью другого дозиметра, желательно другого типа.

Если же вы уверены, что обнаружили источник или участок радиоактивного загрязнения, НИ В КОЕМ СЛУЧАЕ не следует пытаться самостоятельно избавиться от него (выбросить, закопать или спрятать).

Следует как-то обозначить место своей находки, и обязательно сообщить о ней службам, в чьи обязанности входит обнаружение, идентификация и захоронение бесхозных радиоактивных источников.

Информация подготовлена по материалам www.radiation.ru

3.3.1. Радиационный фон — естественный и техногенное

Вся наша планета, в том числе и вся живая природа, населяющая ее, постоянно подвергаются воздействию так называемого естественного (природного) и техногенного радиационного фона, что обусловлено явлением радиоактивности.

Установлено, что радиационный фон Земли формируется под воздействием трех основных компонентов: космического излучения; излучения рассеянных в земной коре, воздухе и других объектах нашей среды природных радионуклидов; излучения искусственных (техногенных) радионуклидов.

Космическому внешнему облучению подвергается вся поверхность Земли. Космическая радиация складывается из частиц, захваченных магнитным полем Земли, галактического космического излучения и корпускулярного излучения Солнца. В его состав входят в основном α -частицы, протоны и электроны. Это так называемое первичное космическое излучение, которое, взаимодействуя с атмосферой Земли, порождает вторичное излучение. В результате на уровне моря излучение состоит почти полностью из мюонов (подавляющая часть) и нейронов. Интенсивность космического излучения зависит от солнечной активности, географического положения объекта и возрастает с высотой над уровнем моря. Наиболее интенсивно оно на Северном и Южном полюсах, менее интенсивно в экваториальных областях. Причина этого – магнитное поле Земли, отклоняющее заряженные частицы космического излучения. Наибольший эффект ослабления действия космического внешнего облучения связан с зависимостью космического излучения от высоты: чем толще слой воздуха, тем защитные свойства атмосферы выше. Поглощенная мощность дозы космического излучения в воздухе на уровне моря равна 32 нГр/ч и формируется в основном мюонами. Для нейтронов на уровне моря мощность поглощенной дозы составляет 0,8 нГр/ч. Люди, живущие на уровне моря, получают в среднем из-за космических лучей эффективную эквивалентную дозу (ЭЭД) около 300 мкЗв/год; для тех же, кто находится на высоте более 2000 м над уровнем моря, эта величина в несколько раз больше. На высоте 8 км мощность ЭЭД составляет 2 мкЗв/ч, что приводит к дополнительному облучению при авиационных перелетах. Коллективная эффективная доза от глобальных авиационных перевозок достигает 10 4 чел.-Зв, что составляет на душу населения в мире в среднем около 1 мкЗв за год. В целом за счет космического излучения большинство населения получает дозу около 350 мкЗв / год.

В результате ядерных реакций, происходящих в атмосфере (а частично и в литосфере) под влиянием космических лучей, могут образовываться космогенные радионуклиды. Например:

n + 14N → 3H + 12C, p + 14N → n + 14C.

В формирование дозы наибольший вклад вносят3H, 7Be, 14C и 22Na, которые поступают вместе с пищей в организм человека (табл. 3.2).

Таблица 3.2 Среднее годовое поступление космогенных радионуклидов в организм человека

Радионуклид

Поступление, Бк/год

Годовая эффективная доза, мкЗв

3H

250

0,004

7Ве

50

0,002

14C

20000

12

22Na

50

0,15

По имеющимся оценкам, взрослый человек потребляет с пищей около 95 кг углерода в год при средней активности на единицу массы углерода 230 Бк/кг, что в пересчете на суммарный вклад космогенных радионуклидов в индивидуальную дозу составляет около 15 мкЗв/год.

Природный радиационный фон формируется главным образом за счет рассеянных в земной коре, воздухе и воде природных радионуклидов и космического излучения. В большинстве стран радиационный природный фон в среднем варьирует в диапазоне 8–9 мкР/ч, иногда превышая средние величины на 10–20 мкР/ч. Этот разброс значений от всех природных источников ионизирующего излучения обуславливает формирование годовой ЭЭД облучения в 2000–2500 мкЗв/год. При этом величина природного радиационного фона в большинстве районов была относительно постоянна на протяжении многих тысяч, а иногда и миллионов лет.

Однако на планете также существуют районы с относительно высоким уровнем радиационного фона, где его величина отличается от средней в 100–200 и даже более чем в 1000 раз. Например, штат Керала в Индии, отдельные участки Украинского кристаллического щита и др. Эти районы, как правило, характеризуются либо неглубоким залеганием урановых или ториевых руд, либо являются зонами выхода на поверхность водных радоновых источников.

Над поверхностью морей и океанов средний радиационный фон уменьшается более чем вдвое по сравнению с поверхностью суши за счет экранирующих свойств слоя воды.

В организме человека постоянно присутствуют природные радионуклиды, изначально содержащиеся в земной коре, воздухе и воде и поступающие через органы дыхания и пищеварения. Наибольший вклад в формирование дозы внутреннего облучения вносят 40К, 87Rb и нуклиды рядов распада 28U и 22Th (табл. 3.3).

Средняя доза внутреннего облучения за счет этих природных радионуклидов составляет около 1,35 мЗв/год. Наибольший вклад в формирование естественного фона облучения наземных живых организмов (до 30–60%) дает не имеющий вкуса и запаха тяжелый газ радон и продукты его распада. В организм человека он поступает при дыхании и вызывает облучение слизистых тканей легких. Радон высвобождается из земной коры повсеместно, но его концентрация в приземном слое воздуха существенно различается в различных точках земного шара.

Таблица 3.3 Вклад в формирование среднегодовой эффективной эквивалентной дозы внутреннего облучения некоторых природных радионуклидов

Если человек находится в помещении, его доза внешнего облучения изменяется под действием двух противоположно действующих факторов: экранирования внешнего излучения зданием; облучения за счет естественных радионуклидов, находящихся в материалах, из которых построено здание.

В зависимости от концентрации изотопов 4 0 К, 22 6 Ra и 2 2 Th в различных строительных материалах мощность дозы в помещениях изменяется от 4·10 — 8 до 12·10 — 8 Гр/ч. В среднем в кирпичных, каменных и бетонных зданиях мощность дозы в 2–3 раза выше, чем в деревянных. Доля домов, внутри которых концентрация радона и продуктов его распада варьируется от 10 3 до 10 4 Бк/см 3, составляет от 0,01 до 0,1% в различных странах. Это означает, что значительное число людей подвергаются заметному облучению из-за высокой концентрации радона внутри домов, где они живут.

Техногенное излучение. Начиная с 50-х годов ХХ в. радиационный фон заметно повысился из-за воздействия множества техногенных источников радиоактивности (в среднем до 10–15 мкР/ч). Эту прибавку обусловили:

  • испытания и применение ядерного оружия;
  • выделение радионуклидов при сгорании органического топлива;
  • перераспределение извлекаемых из недр минералов, содержащих радиоактивные вещества;
  • выбросы и сбросы АЭС и предприятий ядерно-топливного цикла, в том числе при авариях;
  • техногенные источники проникающей радиации (энергетические и исследовательские ядерные установки, медицинская диагностическая и терапевтическая рентгеновская аппаратура, радиационная дефектоскопия, источники сигнальной индикации и т.п.).

В настоящее время известны свыше 900 радионуклидов, полученных искусственным путем в результате различных ядерных реакций. Например, при ядерных взрывах и в управляемой цепной реакции деления образуются около 250 различных изотопов (из них 225 радиоактивных), являющихся продуктами деления ядер тяжелых элементов.

Кроме того, при делении ядер возникают трансурановые радионуклиды, образующиеся при последовательном поглощении нейтронов тяжелыми ядрами без их деления. К таким радионуклидам относятся изотопы плутония, америция и др., которые являются α -излучателями.

К искусственным радионуклидам с особо высокой токсичностью относятся 21 Pb, 226 Ra, 227 Ac, 228 , 230, 232 Th. Группа радионуклидов с высокой радиотоксичностью включает 90 Sr, 106 Ru, 131 I, 144 Се и др. К группе радионуклидов, обладающих средней радиотоксичностью, относятся 22 Na, 89 Sr, 137 Cs, 59 Fe, 65 Zn, 140 Ba и др.

За последние 60 лет человек научился использовать атомную энергию в самых разных целях: в медицине, для создания атомного оружия, производства энергии, поиска полезных ископаемых. Все это приводит к увеличению дозы облучения, получаемой как отдельными людьми, так и населением в целом. Часто облучение за счет источников, созданных человеком, оказывается в тысячи раз интенсивнее, чем от природных источников (табл. 3.4).

Таблица 3.4 Среднегодовые дозы, получаемые от естественного радиационного фона и различных искусственных источников излучения

Источник излучения

Доза, мбэр/год

Природный радиационный фон

200

Стройматериалы

140

Медицинские исследования

140

Бытовые предметы

4

Ядерные испытания

2,5

Полеты в самолетах

0,5

Атомная энергетика

0,3

Телевизоры и мониторы ЭВМ

0,1

Общая доза*

500

В процессе жизнедеятельности незначительные дозы облучения люди также получают: от рентгеновских аппаратов для проверки багажа пассажиров в аэропортах; каменных украшений и др.

Существует огромное количество общеупотребительных предметов, являющихся источниками облучения: часы со светящимся циферблатом, при изготовлении которых используют радий; радиоактивные изотопы, применяемые в светящихся устройствах: указателях входа-выхода, в компасах, телефонных дисках, прицелах, в дросселях флуоресцентных светильников и других электроприборах; детекторы дыма, в которых используются радионуклиды – α -излучатели; специальные оптические линзы с примесями тория и др.

Приведенные данные свидетельствуют, что вклад ядерной энергетики в облучение населения в сравнении с другими техногенными и природными источниками радиоактивности незначителен и сопоставим с воздействиями от полетов на самолете или работы с компьютером.

Различают естественные и искусственные ИИИ. К естественным источникам относят естественное излучение от природных радионуклидов. К искусственным относят антропогенный радиационный фонд. Радиоактивное загрязнение местности и воздушной среды, при аварии на радиационноопастных объектах.

Заражение местности при взрывах ядерных боеприпасов.

Космическое излучение:

Делят на космическое и межгалактическое, и солнечное, а также делят на первичные и вторичные. Галактическое и межгалактическое излучение — это поток протонов (90%) и альфа-частиц (9%), а 1% — ядра лёгких элементов. (Li,Be,N,C,o2,F,). Средний возраст от 1 до 10 миллионов лет, а плотность потока частиц – величина постоянная – 1 или 2 частицы см2/сек. Низкое содержание нейтронов в космических лучах объясняется тем, что нейтрон в свободном состоянии не устойчив и распадается на протон и нейтрон. Время его жизни составляет 16 минут.

Первичное излучение преобладает на высотах 45 км и выше, а вторичное достигает максимальной величины на высоте в 25 км. Космические лучи, проходя через атмосферу вызывают появление космогенных радионуклидов (тритий, углерод 14, бериллий 7, сера 32, натрий 22-24, и другие. Эти радионуклиды, распадаясь, испускают гамма частицы. Наиболее опасным является тритий в период полураспада 12,2 года. Углерод 14 – период полураспада 5750 лет. Оба радионуклида непрерывно возникают и непрерывно распадаются. В человека. Тритий представляет определённую угрозу для чела. Углерод 14 поступает в чела через ЖКТ, а также через лёгкие, равномерно в нём распределяясь. Период полураспада 200 суток. Вызывает транс мутационный эффект. При попадании в чела вызывает изменение структуры азотистых оснований, в результате чего меняется генетический код.

При солнечных выбросах: Происходит выброс в космическое пространство протонов, энергия которых достигает 100 МэВ

Человек живущий на уровне моря получает в среднем от космического облучения 0,315 мЗв/год. В том числе за счёт внешнего облучения 0,3 мЗв/гот, а внутреннее 0,015 мЗв/год.

Земная радиация:

Возраст земли большой. В любой почве всегда имеется количество радионуклидов, но больше всего в гранитах и глинах, а меньше всего в писках и известняке. Радионуклиды земного происхождения разделяются на радионуклиды средней части таблицы Менделеева и на радиоактивные семейства. Родоначальником семейства Урановых, является Уран 238 с периодом полураспада 4,5 миллиарда лет.

Торрия – Торий 232 с периодом полураспада 10 миллиардов лет. Актиния – Уран 235 с периодом полураспада 800 лет. Конечный продукт распада всех семейств – свинец. Во всех трёх семействах один из распада – газ. В семействах Урана – Радон, в семействе Торона – Торон, в семействе активиа, актион. Радон повсеместно выделяется из воды. Анализ доказывает, что в типичный дом поступает радона из почвы – 70 %, из воздуха – 15%, из стройматериалов – 7%, а остальное из других участников.

Радон (см. в википедии)

Для ослабления воздействия радона на чела, необходимо проветривать не менее 5-ти часов. Во время кипени воды в чайнике или другой закрытой посуде нужно на несколько секунд открыть крышку, чтоб радон выветрился. При сжигании газа на кухне так же необходимо проветривать помещение, так как из природного газа выделяется радон.

Антропогенные:

В рб много объектов, которые выделяют радиоактивные в-ва, которые производят пользу челу (Тэц, склады с минеральными удобрениями, телевизоры, компасы, часы, рентгеновские аппараты, короче – ВСЁ РАДИОАКТИВНО!)

При сжигании угля на тэц, содержится уран 238 , калий 40, и др. активность которых составляет 7-52 бк/кг. Рентгенография зуба составляет от 0,003, до 3 мЗв. Желудка до 0,25 мЗв, флюорография до 0,5 мЗв. Рентгеноскопия грудной клетки – 1 мЗВ.

Использование радио изотопов в медицине (натрий 24 – позволяет определить скорость кровотока и проницаемости сосудов. Калий 42 – индикатор кинопроцессов, Стронций 85 – используется для лечения глазных болезней, Технеций – для визуализации внутренних органов. Цезий 137 в терапии, Углерод 14 = медико-биологические исследования, ) Поглощённая доза в облучаемом органе, как правило составляет 20-40 Гр. За несколько сеансов индивидуальная доза на критический орган может составлять до нескольких курей на одну дозу. В РБ средняя доза облучения 5 мЗв/год. Наиболее опасными источниками ионизирующими источниками являются аварии на АЭС и ядерные взрывы. На РБ строится одна АЭС, ядерного оружия нет, но названные источник расположен в близи границ РБ, а как показал опыт в эксплуатации ЧАЭС – представляет огромную угрозу для населения.

Тема другая:

  1. Оценка радиационной обстановки

  2. Принципы, цели и критерии рад безопасности.

  3. Нормы радиационной безопасности (НРБ – 2000)

  4. Основные способы обнаружения и измерения ИИ

  5. Устройства для обнаружения и измерения ИИ

Оценка радиационной обстановки – э то выяснение степени отрицательного воздействия радиации на человека и выбор приемлемых мер защиты, при использовании которых должны быть исключены радиационный поражения людей, растений, диких и домашних условий.

Рад обстановка может быть выявлена и оценена методом прогноза и по данным разведки. Решая задачу прогноза и оценки рад обстановки, необходимо учитывать:

  1. Обобщённые результаты прогноза и оценки рад обстановки проводимые гос структурами по защите населения в ЧС (ЗН в ЧС).

  2. Требования Норм рад безопасности (НРБ)

  3. Возможные источники радиоактивного загрязнения местности и атмосферы.

  4. Характеристики источников рад загрязнения.

  5. Вероятность и возможные масштабы аварии на рад опасных объектах (РОО)

  6. Розу ветров и состояние погоды

Все источники рад загрязнения делятся на

  1. АЭС

  2. Ядерные боеприпасы

  3. Приборы и установки с ИИИ

  4. Рад отходы

Для реализации закона РБ о «Радиационной безопасности населения» в условиях постоянной рад опасности каждый человек должен уметь прогнозировать рад обстановку и уметь её оценивать, что бы при необходимости организовать защиту объектов экономики и населения.

РАД ОБСТАНОВКА – состояние рад загрязнения или заражения местности, оказывающее влияние на деятельность объектов экономики, на жизнедеятельность населения и его здоровье.

Рад обстановка характеризуется плотностью рад загрязнения, уровнями радиации на местности (МОШностью дозы), размерами заражённой или загрязнённой территории.

Местность считается радиоактивна:

  1. Загрязнённой, если уровень радиации на высоте 1м от поверхности почвы превышает естественный рад фон до 0,5 рентген в час. (В РБ естественный рад фон составляет 8-20 мкР/ч)

  2. Заражённой, если уровень радиации на высоте 1м от поверхности почвы составляет более 0,5 Р/ч

2 вопрос

ИИ, с одной стороны, широко используется в практической жизни человека, а с другой представляет опред. Угрозу для его здоровья. Такую угрозу необходимо ограничить путём введения НРБ,

На основании вышеизложенного можно сформулировать цель рад защиты: Предупреждение, возникновение детерминированных эффектов, путём поддержания доз, ниже соответствующих порогов и обеспечении практически всех приемлемых мер для уменьшения вероятности возникновения стохастических (летальных) эффектов. Дополнительная цель заключается в получении гарантий, что те виды деятельности, которые могут привести к облучению, действительно необходимы.

Принципы рад защиты:

  1. Принцип оправданности практической деятельности

  2. Принцип оптимизации

  3. Принцип нормирования индивидуальной дозы – облучение отдельных лиц в сумме от всех видов деятельности не должно превышать установленные дозовые пределы, в связи с этим различают два вида ситуаций:

  1. Нормальная – источник под контролем

  2. Незапланированные ситуации – источник выходит из-под контроля

Вмешательство –любое действие, направленное на уменьшение или предотвращение воздействия излучения от источников, которые вышли из под контроля. При принятии решении о вмешательстве, руководствуются:

  1. Вмешательство должно принести больше пользы, чем вреда

  2. Уровень, при котором вводится вмешательство и уровень при котором оно прекращается, должен быть оптимальным.

  3. Должны быть приняты все меры, для предотвращения детерминированных эффектов, посредством ограничения доз низко пороговых значений для этих эффектов, посредством ограничения доз низко пороговых значений.

Вмешательство осуществляется при использовании одного или несколько зщитных мероприятий:

  1. организация и укрытие населения в защитные сооружения

  2. Назначение стабильного йода

  3. Эвакуация

  4. От селение

  5. Защита органов дыхания

  6. Индивидуальная сан обработка

  7. Контроль доступа в заражённые районы

  8. Использование Средств Индивидуальной Защиты (СИЗ)

  9. Контроль воды и пищевых продуктов

  10. Дезактивация местности и объектов экономики

  11. Изменение профиля сельхоз и пром производства.

Ситуации, в которых следует принимать уровень двух типов: Острое(кратковременное) и Хроническое. В качестве биобазы для установления уровня вмешательства принимаются детерминированные и ст. эффекты. Наиболее серьёзным дет-эффектом является смерть, которая наступает в результате поражения костного мозга.

4 Степени остро лучевой болезни

  1. Лёгкая 1-2 грэя

  2. Средняя 2-4 Гр

  3. Тяжёлая 4-6 ГР

  4. Крайне тяжёлая 6-10 ГР – летальность 100%

Предел дозы – величина годовой эффективной или эквивалентной дозы техногенного облучения, которая не должна превышать в условиях нормальной работы и соблюдения годовой дозы, предотвращает возникновения детерминированных эффектов, а вероятность стохастических эффектов сохраняется при этом на приемлемом уровне.

Радиационная безопасность населения – состояние защищённости настоящего и будущего поколений людей от вредного воздействия ИИИ.

Рад риск – вероятность возникновения у человека или у его потомства, какого-нибудь вредного эффекта в результате облучения.

Уровень вмешательства – это уровень рад фактора, при превышении которого следует проводить опред защитные мероприятия.

Рад авария – потеря управления ИИИ, вызванная неисправностью или повреждение оборудования, а так же неправильными действиями обсуждающего персонала, стихийными действиями и другими причинами, которые могли привести или же привели к облучению людей или рад загрязнению окруж среды сверх установленных норм.

Детектор – устройство, служащее для преобразования электрических колебаний. Детекторы ядерных излучений, приборы для реги ядерных излучений основаны на явлениях, возникающих при прохождении заряженных частиц через в-во. Работа детекторов ИИ описывается различными характеристиками. Наиболее употребительными параметрами являются:

  1. Эффективность счётчика

  2. Мёртвое время

  3. Рабочее напряжение

Индикаторы – простейшие сигнальные приборы, позволяющие обнаружить фак наличия излучений. Детекторами в них чаще всего являются газоразрядные счётчики

Приборы контроля и обнаружения облучения людей (дозиметры)

Удельный поверхностный объёмны

Ионизационные счётчики

Спектрометры приборы и установки, предназначены для опред энергии частиц энергетического спектра типа радионуклида.

Многие люди обеспокоены радиационным фоном вокруг, они опасаются мобильных телефонов и микроволновок, но даже не подозревают о действительно опасных предметах.

Что мы называем радиацией или излучением?

Радиацией называют потоки энергии, которые распространяются вокруг в виде электромагнитных волн. Радиоволны, микроволновое излучение, обычный свет и рентгеновские лучи — все это имеет отношение к радиации. Но радиоактивными могут быть и природные элементы, которые распадаются в течении десятилетий, излучая частицы энергии — электроны (бета-лучи), протоны (альфа-лучи) и нейтроны.
Чтобы определить уровень негативного влияния радиации на организм, надо учесть два фактора: силу электромагнитного (сколько энергии сосредоточено в источнике) и «энергетического уровня» волн, она напрямую связана с частотой колебаний (высокая частота — больше энергии). Волны или частицы (в физике это одно и то же), которые способны повредить ДНК и ткани организмов называют ионизирующим излучением.
Когда люди обнаружили негативное влияние радиации, они захотели знать на сколько она плохая. Для сравнения были созданы специальные единицы измерения зиверт ( Зв, Sv ), характеризующие равную дозу ионизирующего излучения, поглощенную тканями организма. С точки зрения биологии один зиверт равен 5,5% предполагает вероятность заболеть раком. Восемь зиверт вряд оставят вас в живых.
Пока вы осмысливаете эту информацию у себя в голове, рассмотрим некоторые источники радиации, с которыми вы встречаетесь каждый день.

ТОП-13 источников радиации

Бананы

Любой продукт, который имеет температуру, излучает электромагнитные волны, и бананы — не исключение. Но между прочим, бананы содержат природные радиоактивные атомы, а их эквивалентная доза по подсчетам ученых составляет до 0,1 мкЗв или 0,0000001 Зв. Подробней.

Сканер в аэропорту и полет на самолёте

В поисках контрабанды эти машины сканируют вас с применением рентгеновских волн, которые достигают 0,015 – 0,88 мкЗв. С другой стороны, человеку придется пройти через сканер безопасности где-то 1000 или 2000 раз, чтобы получить дозу, как при медицинском снимке грудной клетки. В дополнение, следующее путешествие на самолете обойдется вам примерно в 0,04 мкЗв космической радиации ежеминутно, подробней в статье радиация в самолете.

Рентген грудной клетки

В зависимости от того, каким устройством у вас будут снимать радиограмму, в клинике вы можете получить дозу примерно в 20 мкЗв.

Старые телевизоры с ЭЛТ кинескопом

Все экраны являются источником электромагнитного излучения. Нетрудно догадаться, что вы, сидя весь день за монитором, поглощаете часть этой радиации. Но только малая часть излучения (рентгеновские лучи) действительно опасна, и только тогда, когда речь идет о мониторах со старыми кинескопами (ЭЛТ). Экраны на жидких кристаллах и плазменные панели не могут излучать рентгеновский спектр.

Но, если вы все еще используете старую модель с ЭЛТ, то каждый год получаете до 10 мЗв радиации.

Вода

Вода — источник жизни, но и она содержит радиоактивные частицы. Наиболее распространенный среди них тритий — изотоп водорода, он формируется в атмосфере под влиянием космической радиации. Однако тритий не представляет никакой угрозы жизни: за год с питьевой водой мы получаем примерно 50 мкЗв.

Цемент

Любите прогулки на свежем воздухе? Если вы живете в городе, то обязательно облучаетесь от окружающих бетонных зданий и дорог. Поскольку цемент занимает второе место по распространению радиации после воды, каждый год от него поступает около 30 мкЗв.

Фоновая радиация Вселенной

Материя пространства-времени заполнена рдеющей энергией. Реликтовое излучение идет с самого момента Большого взрыва, который дал жизнь всему, что мы видим во вселенной. Наша атмосфера останавливает большую часть потока реликтового излучения космоса, однако кое-что все же попадает на землю. Наши тела ежегодно получают от него 0,3 мЗв радиации — это примерно 10 посещений рентген-кабинета.

Мое собственное тело

Наше тело тоже производит достаточно естественной радиации! В основном речь идет о распаде калия (это все бананы!) и изотопов углерода-14. В теле среднестатистического человека можно найти около 30 миллиграммов изотопа калия-40, он распадаясь излучает поток электронов. В результате мы облучаем сами себя дозой в 0,39 мЗв в год.

Матушка Земля

Естественная радиоактивность нашей планеты ответственна почти за 50% тепловой энергии, которую она производит. Все дело в длительных сроках полураспада изотопов урана в коре, а также мантии Земли.

Благодаря этой энергии на планете есть жизнь, а материки продолжают дрейфовать, и в то же время это приводит к ежегодному облучению в 0,48 мЗв.

Чернобыль

Мир еще долго будет помнить о чернобыльской катастрофе, ведь она привела к невероятным выбросам радиации в окружающую среду. Однако не стоит беспокоиться. На самой станции при участии международного сообщества уже завершается сооружение укрытия, а вокруг, украинские власти планируют открыть экологический заповедник для туристов.

Но если вы все же окажетесь неподалеку, то рискуете получить дозу от 1,7 до 192 мЗв. Просто не задерживайтесь возле мест с повышенным уровнем радиации и следуйте рекомендациям ваших экскурсоводов.

Ядерный реактор

Если на атомной электростанции вблизи не произошло самое страшное, а именно расплавление активной зоны, считайте, что ничего не случилось. Регламенты ядерной безопасности обеспечивают почти естественный радиационный фон даже во дворе АЭС.

Открытый космос

Космос, как мы его знаем, не является дружественным для жизни средой. За пределами защитного озонового слоя планеты, уровень космической радиации и ультрафиолетового излучения многократно превышает норму. Шесть месяцев на борту МКС дадут примерно 80 мЗв дополнительной дозы, а шестимесячный перелет на Марс — 250 мЗв (эти данные основаны на исследовании миссии NASA Кьюриосити).

Космическая радиация остается самой большой угрозой для астронавтов в планируемых миссиях.

Сигареты

Всем нам известно, что сигареты — причина заболевания раком, но знали ли вы, что это также связано с их радиоактивностью?

Ученые говорят, что свинец, который при курении скапливается в легких, приводит к годовой дозе в 160 мЗв. Это тоже самое, если бы вы провели целый год на орбите под космическими лучами.

На самом деле, объем радиации несколько различен и зависит от того, ярый вы курильщик, или только начинаете.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *